DOI QR코드

DOI QR Code

Aluminum hydroxide-CNT hybrid material for synergizing the thermal conductivity of alumina sphere/thermoplastic polyurethane composite with minimal increase of electrical conductivity

  • Kim, Jeong Ho (Department of Chemistry, Energy Harvest-Storage Research Center, University of Ulsan) ;
  • Dao, Trung Dung (Department of Chemistry, Energy Harvest-Storage Research Center, University of Ulsan) ;
  • Jeong, Han Mo (Department of Chemistry, Energy Harvest-Storage Research Center, University of Ulsan)
  • Received : 2014.12.25
  • Accepted : 2015.09.22
  • Published : 2016.01.25

Abstract

Multi-walled carbon nanotube (CNT) was hybridized with aluminum hydroxide utilizing aluminum trichloride hexahydrate as a precursor to prepare a filler that can be utilized for a thermally conductive yet electrically insulative polymer composite. The thermal conductivity of an alumina sphere/thermoplastic polyurethane (TPU) mixture (100 parts) was enhanced 2 to 3-fold when 5 parts of this hybrid material (Al-CNT hybrid) was added as a synergizer for thermal conduction. This enhancement was better than that by CNT. Moreover, the electrical conductivity increase due to the added Al-CNT hybrid was marginal, whereas the increase was striking when CNT itself was added instead.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. E. Chan, S.N. Leung, M.O. Khan, H. Naguib, F. Dawson, V. Adinkrah, L. Lakatos-Hayward, J. Thermoplast. Compos. Mater. 27 (2012) 541.
  2. A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, J. Phys. Chem. C 111 (2007) 7565. https://doi.org/10.1021/jp071761s
  3. R. Qian, J. Yu, C. Wu, X. Zhai, P. Jiang, RSC Adv. 3 (2013) 17373. https://doi.org/10.1039/c3ra42104j
  4. A.A. Wereszczak, T.G. Morrissey, C.N. Volante, P. Farris, R.J. Groele, R.H. Wiles, H. Wang, IEEE Trans. Compon. Packag. Manuf. 3 (2013) 1994. https://doi.org/10.1109/TCPMT.2013.2281212
  5. J.-H. Kim, Y.-S. Lee, J. Ind. Eng. Chem. 30 (2015) 127. https://doi.org/10.1016/j.jiec.2015.05.013
  6. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, T. Tanaka, Adv. Funct. Mater. 23 (2013) 1824. https://doi.org/10.1002/adfm.201201824
  7. J.-F. Fu, L.-Y. Shi, Q.-D. Zhong, Y. Chen, L.-Y. Chen, Polym. Adv. Technol. 22 (2011) 1032. https://doi.org/10.1002/pat.1638
  8. M.-C. Hsiao, C.-C.M. Ma, J.-C. Chiang, K.-K. Ho, T.-Y. Chou, X. Xie, C.-H. Tsai, L.-H. Chang, C.-K. Hsieh, Nanoscale 5 (2013) 5863. https://doi.org/10.1039/c3nr01471a
  9. W. Cui, F. Du, J. Zhao, W. Zhang, Y. Yang, X. Xie, Y.-W. Mai, Carbon 49 (2011) 495. https://doi.org/10.1016/j.carbon.2010.09.047
  10. S. Lin, M.J. Buehler, Carbon 77 (2014) 351. https://doi.org/10.1016/j.carbon.2014.05.038
  11. J.-R. Choi, Y.S. Lee, S.-J. Park, J. Ind. Eng. Chem. 20 (2014) 3421. https://doi.org/10.1016/j.jiec.2013.12.029
  12. J. Choi, D. Kim, K. Ryu, H.-I. Lee, H. Jeong, C. Shin, J. Kim, B. Kim, Macromol. Res. 19 (2011) 809. https://doi.org/10.1007/s13233-011-0801-4
  13. X. Pu, H.-B. Zhang, X. Li, C. Gui, Z.-Z. Yu, RSC Adv. 4 (2014) 15297. https://doi.org/10.1039/C4RA00518J
  14. Y. Noma, Y. Saga, N. Une, Carbon 78 (2014) 204. https://doi.org/10.1016/j.carbon.2014.06.073
  15. G.-X. Chen, H.-S. Kim, B.H. Park, J.-S. Yoon, Polymer 47 (2006) 4760. https://doi.org/10.1016/j.polymer.2006.04.020
  16. Y. Peng, H. Liu, Ind. Eng. Chem. Res. 45 (2006) 6483. https://doi.org/10.1021/ie0604627
  17. J.T. Han, S.Y. Kim, J.S. Woo, H.J. Jeong, W. Oh, G.-W. Lee, J. Phys. Chem. C 112 (2008) 15961. https://doi.org/10.1021/jp804334f
  18. K. Hernadi, E. Couteau, J.W. Seo, L. Forro, Langmuir 19 (2003) 7026. https://doi.org/10.1021/la034432+
  19. V.H. Pham, S.H. Hur, E.J. Kim, B.S. Kim, J.S. Chung, Chem. Commun. 49 (2013) 6665. https://doi.org/10.1039/c3cc43503b
  20. M. Quintana, K. Spyrou, M. Grzelczak, W.R. Browne, P. Rudolf, M. Prato, ACS Nano 4 (2010) 3527. https://doi.org/10.1021/nn100883p
  21. C.A. Martin, J.K.W. Sandler, M.S.P. Shaffer, M.K. Schwarz, W. Bauhofer, K. Schulte, A.H. Windle, Compos. Sci. Technol. 64 (2004) 2309. https://doi.org/10.1016/j.compscitech.2004.01.025
  22. F. Du, J.E. Fischer, K.I. Winey, Phys. Rev. B 72 (2005) 121404(R). https://doi.org/10.1103/PhysRevB.72.121404
  23. J.-N. Shi, M.-D. Ger, Y.-M. Liu, Y.-C. Fan, N.-T. Wen, C.-K. Lin, N.-W. Pu, Carbon 51 (2013) 365. https://doi.org/10.1016/j.carbon.2012.08.068
  24. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun'ko, Carbon 44 (2006) 1624. https://doi.org/10.1016/j.carbon.2006.02.038
  25. U. Khan, F.M. Blighe, J.N. Coleman, J. Phys. Chem. C 114 (2010) 11401. https://doi.org/10.1021/jp102938q

Cited by

  1. 불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성 vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1033
  2. Phosphorus-functionalized multi-wall carbon nanotubes as flame-retardant additives for polystyrene and poly (methyl methacrylate) vol.130, pp.2, 2016, https://doi.org/10.1007/s10973-017-6432-z
  3. Recent Advances in Polyurethane-Based Nanocomposites: A Review vol.56, pp.14, 2016, https://doi.org/10.1080/03602559.2017.1280683
  4. Effect of Filler Shape on the Thermal Conductivity of Thermal Functional Composites vol.2017, pp.None, 2016, https://doi.org/10.1155/2017/6375135
  5. Thermal Conductivity and Mechanical Properties of Thermoplastic Polyurethane-/Silane-Modified Al2O3 Composite Fabricated via Melt Compounding vol.11, pp.7, 2019, https://doi.org/10.3390/polym11071103
  6. Effects of boron nitrite in thermoplastic polyurethane on thermal, electrical and free volume properties vol.76, pp.8, 2016, https://doi.org/10.1007/s00289-018-2560-2
  7. Flexible polyurethane/boron nitride composites with enhanced thermal conductivity vol.32, pp.3, 2016, https://doi.org/10.1177/0954008319862044