DOI QR코드

DOI QR Code

Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO)

  • Kim, Jong Gu (Division of Green Chemistry & Engineering Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Ji Hong (Division of Green Chemistry & Engineering Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Song, Byung-Jin (Division of Green Chemistry & Engineering Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Chul Wee (Division of Green Chemistry & Engineering Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Im, Ji Sun (Division of Green Chemistry & Engineering Research, Korea Research Institute of Chemical Technology (KRICT))
  • Received : 2016.01.07
  • Accepted : 2016.02.16
  • Published : 2016.04.25

Abstract

Pitch synthesis from pyrolyzed fuel oil (PFO) was conducted to understand the empirical synthesis tendency as a function of reaction temperature. Additionally, the chemical and physical characteristics of PFO and produced pitch are identified using X-ray diffraction analysis, thermogravimetric analysis, softening point analysis, and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis. The produced pitch exhibited an enhanced stacking height ($L_C$) value and C/H ratio, which is related to the formation of graphitic structure, according to the increased reaction temperature. The carbon residue yield obtained at $900^{\circ}C$ showed a gradually increased value of up to 42.58% in the sample synthesized at the temperature of $410^{\circ}C$, depending on the increased reaction temperature. The molecular weight distribution of the produced pitches exhibited noticeable variation during the thermal reaction via MALDI-TOF analysis. The variation of the molecular weight fraction is assumed based on the pitch synthesis mechanism, e.g., polymerization, condensation and cracking reaction.

Keywords

Acknowledgement

Grant : Development of preparation technology in petroleum-based pitch and needle/isotropic cokes

Supported by : Ministry of Trade, Industry & Energy (MI)

References

  1. I. Mochida, Y. Korea, C.H. Ku, F. Watanabe, Y. Sakai, Carbon 38 (2000) 305. https://doi.org/10.1016/S0008-6223(99)00176-1
  2. H. Song, X. Chen, X. Chen, S. Xhang, H. Li, Carbon 41 (2003) 3037. https://doi.org/10.1016/S0008-6223(03)00430-5
  3. I. Mochida, K. Shimizu, Y. Korai, Y. Sakai, S. Fujiyama, H. Toshima, T. Hono, Carbon 30 (1992) 55. https://doi.org/10.1016/0008-6223(92)90106-7
  4. J.G. Kim, J.H. Kim, B.J. Song, Y.P. Jeon, C.W. Lee, Y.S. Lee, J.S. Im, Fuel 167 (2016) 25. https://doi.org/10.1016/j.fuel.2015.11.050
  5. S. Chand, J. Mater. Sci. 35 (2000) 1303. https://doi.org/10.1023/A:1004780301489
  6. K. Subhash, S. Manoj, Carbon Lett. 16 (2015) 171. https://doi.org/10.5714/CL.2015.16.3.171
  7. J. Zhu, S.W. Park, H.I. Joh, H.C. Kim, S. Lee, Carbon Lett. 14 (2013) 94. https://doi.org/10.5714/CL.2013.14.2.094
  8. C.J. Ahn, I.S. Park, H.J. Joo, Carbon Lett. 11 (2010) 304. https://doi.org/10.5714/CL.2010.11.4.304
  9. X. Cheng, Q. Zha, X. Li, X. Yang, Fuel Process. Technol. 89 (2008) 1436. https://doi.org/10.1016/j.fuproc.2008.07.003
  10. R. Moriyama, H. Kumagaia, J. Hayashia, C. Yamaguchi, J. Mondorib, H. Matsui, T. Chiba, Carbon 38 (2000) . https://doi.org/10.1016/S0008-6223(99)00152-9
  11. S. Eser, G. Wang, Energy Fuels 21 (2007) 3573. https://doi.org/10.1021/ef060541v
  12. B.J. Kim, Y. Eom, O. Kato, J. Miyawaki, B.C. Kim, I. Mochida, S.H. Yoon, Carbon 77 (2014) 747. https://doi.org/10.1016/j.carbon.2014.05.079
  13. I. Mochida, H. Toshima, Y. Korai, T. Varga, J. Mater. Sci. 25 (1990) 3484. https://doi.org/10.1007/BF00575374
  14. P.P. Li, J.M. Xiong, M.L. Ge, J.C. Sun, W. Zhang, Y.Y. Song, Fuel Process. Technol. 140 (2015) 231. https://doi.org/10.1016/j.fuproc.2015.09.011
  15. H.Y. Kim, Monthly Energy Statistics, Korea Energy Economics Institute, 2015.
  16. W.F. Edwards, L. Jin, M.C. Thies, Carbon 41 (2003) 2761. https://doi.org/10.1016/S0008-6223(03)00386-5
  17. W.A. Burgess, M.C. Thies, Carbon 49 (2011) 636. https://doi.org/10.1016/j.carbon.2010.10.011
  18. B. Manoj, A.G. Kunjomana, Int. J. Electrochem. Sci. 7 (2012) 3127.
  19. M. Dumont, G. Chollon, M.A. Dourges, R. Pailler, X. Bourrat, R. Naslain, J.L. Bruneel, M. Couzi, Carbon 40 (2002) 1475. https://doi.org/10.1016/S0008-6223(01)00320-7
  20. M. Perez, M. Granda, R. Garcia, R. Santamaria, E. Romero, R. Menendez, J. Anal. Appl. Pyrolysis 63 (2002) 223. https://doi.org/10.1016/S0165-2370(01)00156-5
  21. L.M. Manocha, M. Patel, S.M. Manocha, C. Vix-Guterl, P. Ehrburger, Carbon 39 (2001) 663. https://doi.org/10.1016/S0008-6223(00)00178-0

Cited by

  1. 석유계 잔사유 및 coal-tar의 핏치 개질 특성 vol.27, pp.5, 2016, https://doi.org/10.7316/khnes.2016.27.5.612
  2. 리튬이온전지용 화학적 활성화로 제조된 석유계 피치 음극소재의 전기화학적 특성 vol.55, pp.3, 2017, https://doi.org/10.9713/kcer.2017.55.3.307
  3. Analysis of Polymer Characteristics Using Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry vol.28, pp.3, 2016, https://doi.org/10.14478/ace.2017.1019
  4. Effect of added mesophase pitch during the pitch synthesis reaction of PFO vol.23, pp.None, 2016, https://doi.org/10.5714/cl.2017.23.048
  5. Preparation of carbon discs using petroleum-based binder pitch reformed with carbon black vol.23, pp.None, 2017, https://doi.org/10.5714/cl.2017.23.084
  6. 석유계 피치를 사용한 리튬전지 음극소재의 전기화학적 특성 vol.28, pp.5, 2017, https://doi.org/10.14478/ace.2017.1062
  7. The effect of carbon black on reforming of pyrolysis fuel oil for a binder pitch vol.206, pp.None, 2016, https://doi.org/10.1016/j.fuel.2017.05.056
  8. 석유계 잔사유(PFO)의 피치 합성 시 압력조건에 따른 피치 특성 변화 vol.29, pp.6, 2016, https://doi.org/10.14478/ace.2018.1070
  9. Influence of kneading ratio on the binding interaction of coke aggregates on manufacturing a carbon block vol.28, pp.None, 2018, https://doi.org/10.5714/cl.2018.28.024
  10. A Comparison of Ethylene-Tar-Derived Isotropic Pitches Prepared by Air Blowing and Nitrogen Distillation Methods and Their Carbon Fibers vol.12, pp.2, 2019, https://doi.org/10.3390/ma12020305
  11. Effects of pressure-controlled reaction and blending of PFO and FCC-DO for mesophase pitch vol.29, pp.2, 2016, https://doi.org/10.1007/s42823-019-00022-2
  12. Improved understanding of the molecular structure of pyrolysis fuel oil: towards its utilization as a raw material for mesophase pitch synthesis vol.29, pp.3, 2016, https://doi.org/10.1007/s42823-019-00027-x
  13. 피치계 소프트 카본 음극재 제조 시 피치의 연화점이 음극재 초기 효율 및 율속 특성에 미치는 영향 vol.30, pp.3, 2016, https://doi.org/10.14478/ace.2019.1015
  14. Rheological characteristic of impregnating pitch from modified pitch vol.137, pp.1, 2016, https://doi.org/10.1007/s10973-018-7905-4
  15. Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch vol.29, pp.4, 2016, https://doi.org/10.1007/s42823-019-00028-w
  16. Effect of petroleum pitch coating on electrochemical performance of graphite as anode materials vol.36, pp.10, 2019, https://doi.org/10.1007/s11814-019-0354-3
  17. 석유 부산물의 물리화학적 분석을 통한 화재폭발 특성연구 vol.30, pp.5, 2016, https://doi.org/10.14478/ace.2019.1061
  18. 산화 공정이 석유계 등방성 피치의 열거동 특성에 미치는 영향 vol.31, pp.1, 2016, https://doi.org/10.14478/ace.2019.1101
  19. Pyrolyzed Fuel Oil/Coal-tar 혼합원료의 열중합 반응에 따른 Pitch 제조 특성 vol.31, pp.3, 2016, https://doi.org/10.14478/ace.2020.1029
  20. 리튬이온 전지용 바이오매스 기반 음극재 개발 vol.26, pp.2, 2020, https://doi.org/10.7464/ksct.2020.26.2.131
  21. The effect of waste PET addition on PFO-based anode materials for improving the electric capacity in lithium-ion battery vol.30, pp.5, 2016, https://doi.org/10.1007/s42823-020-00124-2
  22. Improved specific capacitance of pitch-based activated carbon by KOH/KMnO4 agent for supercapacitors vol.30, pp.5, 2016, https://doi.org/10.1007/s42823-020-00158-6
  23. 침상 코크스의 피치 코팅에 따른 리튬 이차전지 탄소계 음극소재의 전기화학적 특성 vol.31, pp.5, 2020, https://doi.org/10.14478/ace.2020.1061
  24. 열분해 연료유 및 PET 기반 활성탄을 이용한 NO 가스 센서의 감도 향상 연구 vol.32, pp.1, 2016, https://doi.org/10.14478/ace.2020.1108
  25. Direct Sampling Graphite Furnace Atomic Absorption Spectrometry - A Suitable Tool for the Determination of Metallic Contaminants in Pitch vol.94, pp.7, 2016, https://doi.org/10.1246/bcsj.20210118
  26. Properties of graphite blocks consisting of ordered graphite flakes with bimodal particle size distribution vol.3, pp.8, 2016, https://doi.org/10.1002/eng2.12368
  27. Functionalization of petroleum pitch-based porous carbon foams and their application in radionuclides adsorption/decontamination vol.5, pp.None, 2016, https://doi.org/10.1016/j.cartre.2021.100108
  28. Effect of kneading and carbonization temperature on the structure of the carbon block for thermally conductive bulk graphites vol.31, pp.6, 2016, https://doi.org/10.1007/s42823-021-00288-5