DOI QR코드

DOI QR Code

Use of Lysozyme as a Feed Additive on In vitro Rumen Fermentation and Methane Emission

  • Biswas, Ashraf A. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Lee, Sung Sill (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University) ;
  • Mamuad, Lovelia L. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Kim, Seon-Ho (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Choi, Yeon-Jae (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Bae, Gui-Seck (Department of Animal Science and Technology, Chung-Ang University) ;
  • Lee, Kichoon (Department of Animal Sciences, The Ohio State University) ;
  • Sung, Ha-Guyn (Department of Animal Science & Technology, Sangji University) ;
  • Lee, Sang-Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University)
  • Received : 2016.07.28
  • Accepted : 2016.09.28
  • Published : 2016.11.01

Abstract

This study was conducted to determine the effect of lysozyme addition on in vitro rumen fermentation and to identify the lysozyme inclusion rate for abating methane ($CH_4$) production. An in vitro ruminal fermentation technique was done using a commercial concentrate to rice straw ratio of 8:2 as substrate. The following treatments were applied wherein lysozyme was added into 1 mg dry matter substrate at different levels of inclusion: Without lysozyme, 2,000, 4,000, and 8,000 U lysozyme. Results revealed that, lysozyme addition had a significant effect on pH after 24 h of incubation, with the highest pH (p<0.01) observed in 8,000 U lysozyme, followed by the 4,000 U, 2,000 U, and without lysozyme. The highest amounts of acetic acid, propionic acid (p<0.01) and total volatile fatty acid (TVFA) (p<0.05) were found in 8,000 U after 24 h of incubation. The $CH_4$ concentration was the lowest in the 8,000 U and the highest in the without lysozyme addition after 24 h of incubation. There was no significant differences in general bacteria, methanogen, or protozoan DNA copy number. So far, addition of lysozyme increased the acetate, propionate, TVFA, and decreased $CH_4$ concentration. These results suggest that lysozyme supplementation may improve in vitro rumen fermentation and reduce $CH_4$ emission.

Keywords

References

  1. Anantasook, N., M. Wanapat, A. Cherdthong, and P. Gunun. 2013. Changes of microbial population in the rumen of dairy steers as influenced by plant containing tannins and saponins and roughage to concentrate ratio. Asian Australas. J. Anim. Sci. 26:1583-1591. https://doi.org/10.5713/ajas.2013.13182
  2. Asanuma, N., M. Iwamoto, and T. Hino. 1999. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787. https://doi.org/10.3168/jds.S0022-0302(99)75296-3
  3. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
  4. Denman, S. E. and C. S. McSweeney. 2006. Development of a realtime PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  5. Ellison, R. T. 3rd and T. J. Giehl. 1991. Killing of gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Invest. 88:1080-1091. https://doi.org/10.1172/JCI115407
  6. Giraldo, L. A., M. D. Carro, M. J. Ranilla, and M. L. Tejido. 2007. Influence of fibrolytic enzymes on in vitro methane production and rumen fermentation of a substrate containing 60% of grass hay. Livest. Res. Rural Dev. 19:257-261.
  7. Goncu, S., M. Gorgulu, and G. Gokce. 2012. The effect of additional lyzozyme to milk on growth performances of Holstein calves. J. Anim. Vet. Adv. 11:3724-3727.
  8. Han, S., S. Kim, and H. Shin. 2005. UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste. Process Biochem. 40:2897-2905. https://doi.org/10.1016/j.procbio.2005.01.005
  9. Hattori, K. and H. Matsui. 2008. Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches. Anaerobe 14:87-93. https://doi.org/10.1016/j.anaerobe.2007.12.002
  10. Ibrahim, H. R., T. Matsuzaki, and T. Aoki. 2001. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett. 506:27-32. https://doi.org/10.1016/S0014-5793(01)02872-1
  11. Karnati, S., J. Sylvester, C. Ribeiro, L. Gilligan, and J. Firkins. 2009. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis. J. Dairy Sci. 92:3849-3860. https://doi.org/10.3168/jds.2008-1436
  12. Kim, S., L. L. Mamuad, C. Jeong, Y. Choi, S. S. Lee, J. Ko, and S. Lee. 2013. In vitro evaluation of different feeds for their potential to generate methane and change methanogen diversity. Asian Australas. J. Anim. Sci. 26:1698-1707. https://doi.org/10.5713/ajas.2013.13260
  13. Mamuad, L., S. H. Kim, C. D. Jeong, Y. J. Choi, C. O. Jeon, and S. Lee. 2014. Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity. J. Microbiol. 52:120-128. https://doi.org/10.1007/s12275-014-3518-1
  14. May, K. D., J. E. Wells, C. V. Maxwell, and W. T. Oliver. 2012. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-dayold pigs. J. Anim. Sci. 90:1118-1125. https://doi.org/10.2527/jas.2011-4297
  15. Miller, T. L., M. J. Wolin, H. X. Zhao, and M. P. Bryant. 1986. Characteristics of methanogens isolated from bovine rumen. Appl. Environ. Microbiol. 51:201-202.
  16. Nyachoti, C. M., E. Kiarie, S. K. Bhandari, G. Zhang, and D. O. Krause. 2012. Weaned pig responses to Escherichia coli K88 oral challenge when receiving a lysozyme supplement. J. Anim. Sci. 90:252-260. https://doi.org/10.2527/jas.2010-3596
  17. Ownes, F. N., D. S. Secrist, W. J. Hill, and D. R. Gill. 1998. Acidosis in cattle: A review. J. Anim. Sci. 76:275-286. https://doi.org/10.2527/1998.761275x
  18. Quinn, M. J., M. L. May, K. E. Hales, N. DiLorenzo, J. Leibovich, D. R. Smith, and M. L. Galyean. 2009. Effects of ionophores and antibiotics on in vitro hydrogen sulfide production, dry matter disappearance, and total gas production in cultures with a steam-flaked corn-based substrate with or without added sulfur. J. Anim. Sci. 87:1705-1713. https://doi.org/10.2527/jas.2008-1549
  19. Sahoo, N. R., P. Kumar, B. Bhusan, T. K. Bhattacharya, S. Dayal, and M. Sahoo. 2012. Lysozyme in livestock: A guide to selection for disease resistance: A review. J. Anim. Sci. Adv. 2:347-360.
  20. Salton, M. R. J. 1957. The properties of lysozyme and its action on microorganisms. Bacteriol. Rev. 21:82-100.
  21. SAS (Statistical Analysis System) Institute Inc. 2004. SAS/STAT User's Guide. version 9.1. SAS Institute Inc. Cary, NC, USA.
  22. Soriano, A. P., L. L. Mamuad, S. H. Kim, Y. J. Choi, C. D. Jeong, G. S. Bae, M. B. Chang, and S. S. Lee. 2014. Effect of Lactobacillus mucosae on in vitro rumen fermentation characteristics of dried brewers grain, methane production and bacterial diversity. Asian Australas. J. Anim. Sci. 27:1562-1570. https://doi.org/10.5713/ajas.2014.14517
  23. Stiverson, J., M. Morrison, and Z. Yu. 2011. Populations of select cultured and uncultured bacteria in the rumen of sheep and the effect of diets and ruminal fractions. Int. J. Microbiol. 2011:750613.
  24. Tabaru, H., E. Kadota, H. Yamada, N. Sasaki, and A. Takeuchi. 1988. Determination of volatile fatty acids and lactic acid in bovine plasma and ruminal fluid by high performance liquid chromatography. Jpn. J. Vet. Sci. 50:1124-1126. https://doi.org/10.1292/jvms1939.50.1124
  25. Ungerfeld, E. M., S. R. Rust, D. R. Boone, and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. J. Appl. Microbiol. 97:520-526. https://doi.org/10.1111/j.1365-2672.2004.02330.x
  26. Van Dung, D., W. Shang, and W. Yao. 2014. Effect of crude protein levels in concentrate and concentrate levels in diet on in vitro fermentation. Asian Australas. J. Anim. Sci. 27:797-805. https://doi.org/10.5713/ajas.2013.13560
  27. Zhou, Z., Q. Meng, and Z. Yu. 2011. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl. Environ. Microbiol. 77:2634-2639. https://doi.org/10.1128/AEM.02779-10
  28. Zinn, R. A., E. Alvarez, M. Mendez, M. Montano, E. Ramirez, and Y. Shen. 1997. Influence of dietary sulfur level on growth performance and digestive function in feedlot cattle. J. Anim. Sci. 75:1723-1728. https://doi.org/10.2527/1997.7571723x

Cited by

  1. rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets pp.13443941, 2017, https://doi.org/10.1111/asj.12913
  2. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants vol.61, pp.3, 2016, https://doi.org/10.5187/jast.2019.61.3.122
  3. A Combinational Strategy for Effective Heterologous Production of Functional Human Lysozyme in Pichia pastoris vol.8, pp.None, 2016, https://doi.org/10.3389/fbioe.2020.00118
  4. Seasonal Influence on Rumen Microbiota, Rumen Fermentation, and Enteric Methane Emissions of Holstein and Jersey Steers under the Same Total Mixed Ration vol.11, pp.4, 2016, https://doi.org/10.3390/ani11041184