DOI QR코드

DOI QR Code

Bleaching of cold-pressed rapeseed oil using activated clay

산성백토를 이용한 저온압착 유채유의 탈색 평가

  • Lee, Yong-Hwa (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Park, Won (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Tae-Sung (Yeonggwang-Gun Agricultural Technology Center) ;
  • Kim, Kwang-Soo (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Jang, Young-Seok (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Kyeong-Bo (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration)
  • 이영화 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 박원 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 이태성 (영광군농업기술센터) ;
  • 김광수 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 장영석 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 이경보 (농촌진흥청 국립식량과학원 바이오에너지작물연구소)
  • Received : 2016.05.23
  • Accepted : 2016.09.28
  • Published : 2016.09.30

Abstract

Acid-activated clays (SUPER-DC, DC-A3, and P1) are used for the bleaching of cold-pressed rapeseed oil. In this study we tested the bleaching performance of cold-pressed rapeseed oil according to the different reaction time (20, 40, 60, 80 min) and temperature (40, 80, $120^{\circ}C$). Oil color (lightness, redness, yellowness), pigments (chlorophyll A and carotenoid content) and quality properties (fatty acid composition, tocopherols (${\alpha}$, ${\beta}$, ${\gamma}$, ${\delta}$), and plant sterols (${\beta}$-sitosterol, campesterol, stigmasterol) content) were analyzed. The results showed that bleaching of cold-pressed rapeseed oil with 2% acid-activated clays at $40^{\circ}C$ for 20 min, brightness (L) increased, but redness (a) and yellowness (b) decreased. Bleaching of cold-pressed rapeseed oil with 2% DC-SUPER at $40^{\circ}C$ removed chlorophyll A and carotenoids pigments significantly. In addition, about 50% of total tocopherol content in cold-pressed rapeseed oil was reduced by bleaching. Originally total tocopherol content was 46.62mg/100g in cold-pressed rapeseed oil. But after bleaching, total tocopherol content was 12.67mg/100g (20 min bleaching), 15.31mg/100g (40 min bleaching), and 13.56mg/100g (60 min bleaching). However plant sterols content in cold-pressed rapeseed oil remained unchanged by bleaching. Overall, acid-activated clays were useful for the bleaching of pigmented rapeseed oil.

최근 건강기능성 식용유에 대한 선호도가 높아지면서 저온압착(cold-pressing) 유채유에 대한 관심이 증대되고 있다. 저온압착 유채유는 정제유에 비해 기름 고유의 맛과 향을 느낄 수 있는 장점이 있다. 본 연구에서는 산성백토를 이용한 저온압착 유채유의 탈색과정에서 산성백토의 첨가량, 처리시간 및 반응온도에 따른 탈색 후 이화학적 특성과 품질특성을 분석하고자 하였다. 이화학적 특성으로 색차(명도, 적색도, 황색도)를 조사하였고, 품질특성은 chlorophyll-A 와 carotenoid 함량, 지방산 조성, 토코페롤(${\alpha}$, ${\beta}$, ${\gamma}$, ${\delta}$), 및 식물성 스테롤(${\beta}$-sitosterol, campesterol, stigmasterol)을 분석하였다. 먼저 산성백토(DC-SUPER)의 첨가량(1, 2, 3%)에 따른 저온압착 유채유의 색도변화를 관찰한 결과, DC-SUPER 첨가량 2%에서 탈색 1시간 후 유채유의 색도가 갈색에서 연노랑으로 옅어졌다. 본 결과를 바탕으로 총 3종의 산성백토(DC-SUPER, DC-A3, 및 P1)에 대해 첨가량 2%를 기준으로 처리시간(20, 40, 60, 80분) 증가에 따른 색차를 조사한 결과, 처리시간 20분 경과 후부터 대조구 대비 명도(L)는 증가하였고, 적색도(a)와 황색도(b)는 감소하는 경향을 보였다. 또한 산성백토 DC-SUPER 2% 첨가 후, 반응온도(40, 80, $120^{\circ}C$) 증가에 따른 색차를 조사한 결과, L값과 a값은 큰 변화를 보이지 않았으나, b값은 급격히 감소하는 경향을 보였다. 특히, 반응온도 $40^{\circ}C$에서 처리시간 20분 이내에 클로로필 A와 카로티노이드는 대부분 제거되었고, 토코페롤 함량도 현저히 감소하였다. 탈색 전 저온압착 유채유의 총 토코페롤 함량은 46.62mg/100g이나, 탈색 후 총 토코페놀은 12.67mg/100g(20분 탈색), 15.31mg/100g(40분 탈색), 13.56mg/100g(60분 탈색)로 나타나, 약 50% 이상 감소하였다. 탈색 후 ${\alpha}$-토코페롤과 ${\delta}$-토코페롤의 함량 감소가 매우 컸고, ${\gamma}$>${\beta}$>${\alpha}$>${\delta}$-토코페롤의 순으로 포함되어 있었다. 하지만 탈색 전 후에 저온압착 유채유의 식물성 스테롤 함량은 큰 변화가 없었다. 따라서 본 연구에서는 산성백토 이용 저온압착 유채유 탈색시 색도를 향상시킴을 확인하였으며, 영양학적으로 우수한 총 토코페롤 등이 감소한 바 향후 이를 보완 할 수 있는 연구가 필요하다.

Keywords

References

  1. Kania M., Michalak M., Gogolewski M., and Hoffmann A., Antioxidative potential of substances contained in cold pressed soybean oil and after each phase of refining process. Acta Scientiarum Polonorum. Technologia Alimentaria, 3(1), 113 (2004).
  2. Lee Y.H., Shin J.A., Zhang H., Lee K.T., Kim K.S., Jang Y.S., and Park K.G., Improvement of low temperature property of biodiesel from palm oil and beef tallow via urea complexation. Journal of the Korean society for New and Renewable Energy, 8(4), 38 (2012).
  3. Choe E., and Min D.B., Mechanisms and factors for edible oil oxidation. Comprehensive reviews in food science and food safety, 5(4), 169 (2006). https://doi.org/10.1111/j.1541-4337.2006.00009.x
  4. Gee P.T., Analytical characteristics of crude and refined palm oil and fractions. European journal of lipid science and technology, 109(4), 373 (2007). https://doi.org/10.1002/ejlt.200600264
  5. Sionek B., Cold pressed oils. Roczniki Panstwowego Zakladu Higieny, 48(3), 283 (1997).
  6. Sawamura M., THI MINH TU N., Onishi Y., Ogawa E., and Choi H.S., Characteristic odor components of Citrus reticulata Blanco (Ponkan) cold-pressed oil. Bioscience, biotechnology, and biochemistry, 68(8), 1690 (2004). https://doi.org/10.1271/bbb.68.1690
  7. Siger A., Nogala-Kalucka M., and Lampart-Szczapa E., The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. Journal of Food Lipids, 15(2), 137 (2008). https://doi.org/10.1111/j.1745-4522.2007.00107.x
  8. Kim J.K., Park J.Y., Jeon C.H., Min K.I., Yim E.S., Jung C.S., and Lee J.H., Fuel Properties of Various Biodiesels Derived Vegetable Oil. Journal of the Korean Oil Chemists' Society, 30(1), 35 (2013). https://doi.org/10.12925/jkocs.2013.30.1.035
  9. Stout L.E., Chamberlain D.F., and McKelvey J.M., Factors influencing vegetable oil bleaching by adsorption. Journal of the American Oil Chemists' Society, 26(3), 120 (1949). https://doi.org/10.1007/BF02665173
  10. Taylor D.R., Ungermann C.B., and Demidowicz Z., The adsorption of fatty acids from vegetable oils with zeolites and bleaching clay/zeolite blends. Journal of the American Oil Chemists' Society, 61(8), 1372 (1984). https://doi.org/10.1007/BF02542246
  11. Bayari O.R., Musleh S.M., Tutungi M.F., and Derwish G.W., Bleaching of some vegetable oils with acid-activated jordanian bentonite and kaolinite. Asian Journal of Chemistry, 20(3), 2385 (2008).
  12. Makhoukhi B., Didi M.A., Villemin D., and Azzouz A., Acid activation of bentonite for use as a vegetable oil bleaching agent. Grasas y Aceites, 60(4), 343 (2009). https://doi.org/10.3989/gya.108408
  13. Vernon L.P., Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Analytical Chemistry, 32(9), 1144 (1960). https://doi.org/10.1021/ac60165a029
  14. Rahmani M., and Csallany A.S., Chlorophyll and $\beta$-carotene pigments in Moroccan virgin olive oils measured by high-performance liquid chromatography. Journal of the American Oil Chemists Society, 68(9), 672 (1991). https://doi.org/10.1007/BF02662293
  15. Nam H.Y., and Lee K.T., Analysis of characterization in commercial extra virgin olive oils. Journal of the Korean Society of Food Science and Nutrition, 36(7), 866 (2007). https://doi.org/10.3746/jkfn.2007.36.7.866
  16. Lee M.H., Kim M.S., Lee L.G., Shin H.G., and Sohn H.Y., Evaluation of biological activity and characterization of taste and function-enhanced yam chips. Korean Journal of Microbiology and Biotechnology, 39(2), 153 (2011).

Cited by

  1. 압착식, 압출식 착유 대마 종실유의 색깔과 주요성분 비교 vol.34, pp.3, 2016, https://doi.org/10.12925/jkocs.2017.34.3.666