DOI QR코드

DOI QR Code

A Study on the Fluorescence Imaging System Packaging and Optical Intensity Characteristics

형광 이미징 시스템의 패키징 및 강도 특성 연구

  • Kim, Taehoon (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Cho, Sang Uk (Nawoo Vision Corporation R&D Group) ;
  • Park, Chan Sik (Nawoo Vision Corporation R&D Group) ;
  • Lee, Hak-Guen (Nawoo Vision Corporation R&D Group) ;
  • Kim, Doo-In (BK21+Nano-integrated Cognomechatronics Engineering, Pusan National University) ;
  • Jeong, Myung Yung (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 김태훈 (부산대학교 인지메카트로닉스공학과) ;
  • 조상욱 (나우비젼 기술연구소) ;
  • 박찬식 (나우비젼 기술연구소) ;
  • 이학근 (나우비젼 기술연구소) ;
  • 김두인 (부산대학교 BK21+나노융합인지메카트로닉스공학 사업단) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Received : 2016.09.07
  • Accepted : 2016.09.27
  • Published : 2016.09.30

Abstract

In this paper, we introduced a near infrared fluorescence imaging system that has long working distance and analyzed on the effects of measurement variables such as gain, exposure time, working distance, magnification. Fluorescence signal intensity is growing up according to exposure time and magnification increasing, and it is getting stronger according to increase of gain, but the background signal intensity is getting stronger together. It causes low SBR. Due to a laser irradiation method, laser intensity distribution of the introduced system is not uniform and it makes fluorescence signal weak. So, we proposed a solution.

본 논문에서는 긴 작동거리(working distance, WD)를 가지는 근적외선 형광 이미징 시스템을 소개하고, gain, 노출시간, 작동거리, 확대배율 등 측정 변수에 의한 형광 영상의 차이에 대해 분석하였다. 노출시간이 길수록, 확대배율이 클수록 형광신호는 더욱 강해지고, gain이 클수록 형광신호도 강해지지만, 배경신호도 함께 증가하여 SBR은 나빠질 수 있다. 제안한 시스템은 레이저 조사 방식으로 인해 작동거리가 짧은 경우 레이저 조사 영역의 강도 분포가 균일하지 못해서 형광신호가 약해지며, 그에 따른 해결방안을 제안하였다.

Keywords

References

  1. J. G. Jeong, "General perspectives for molecular nuclear imaging", The Korean Society of Nuclear Medicine, 38(2), 111 (2004).
  2. J. H. Lee, G. Park, G. H. Hong, J. Choi and H. S. Choi, "Design considerations for targeted optical contrast agents", Quant. Imaging. Med. Surg., 2(4), 266 (2012).
  3. J. V. Frangioni, "In vivo near-infrared fluorescence imaging", Curr. Opin. Chem. Biol., 7(5), 626 (2003). https://doi.org/10.1016/j.cbpa.2003.08.007
  4. J. Choi, S. U. Cho, D. Kim, H. Lee, H. S. Choi and M. Y. Jeong, "A Study on Characteristics Analysis of Multichannel Filter Module for Near-infrared Fluorescence Imaging", J. Microelectron. Packag. Soc., 23(1), 29 (2016).
  5. A. W. Yang, S. U. Cho, M. Y. Jeong and H. S. Choi, "NIR Fluorescence Imaging Systems with Optical Packaging Technology", J. Microelectron. Packag. Soc., 21(4), 25 (2014).
  6. A. M. De Grand and J. V. Frangioni, "An operational nearinfrared fluorescence imaging system prototype for large animal surgery", Technol. Cancer. Res. Treat., 2(6), 553 (2003). https://doi.org/10.1177/153303460300200607
  7. T. Kim, S. U. Cho, C. S. Park, H. Lee, D. Kim and M. Y. Jeong, "A study on fluorescence imaging system characteristics depending on tilting of band pass filter", J. Microelectron. Packag. Soc., 23(2), 85 (2016). https://doi.org/10.6117/kmeps.2016.23.2.085
  8. S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar and J. V. Frangioni, "The $FLARE^{TM}$ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping", Annals of Surgical Oncology, 16(10), 2943 (2009). https://doi.org/10.1245/s10434-009-0594-2