DOI QR코드

DOI QR Code

Antagonistic Evaluation of Chromobacterium sp. JH7 for Biological Control of Ginseng Root Rot Caused by Cylindrocarpon destructans

  • Han, Joon-Hee (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Park, Gi-Chang (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Kim, Kyoung Su (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University)
  • Received : 2017.07.14
  • Accepted : 2017.10.16
  • Published : 2017.12.01

Abstract

Cylindrocarpon destructans is an ascomycete soil-borne pathogen that causes ginseng root rot. To identify effective biocontrol agents, we isolated several bacteria from ginseng cultivation soil and evaluated their antifungal activity. Among the isolated bacteria, one isolate (named JH7) was selected for its high antibiotic activity and was further examined for antagonism against fungal pathogens. Strain JH7 was identified as a Chromobacterium sp. using phylogenetic analysis based on 16S rRNA gene sequences. This strain was shown to produce antimicrobial molecules, including chitinases and proteases, but not cellulases. Additionally, the ability of JH7 to produce siderophore and solubilize insoluble phosphate supports its antagonistic and beneficial traits for plant growth. The JH7 strain suppressed the conidiation, conidial germination, and chlamydospore formation of C. destructans. Furthermore, the JH7 strain inhibited other plant pathogenic fungi. Thus, it provides a basis for developing a biocontrol agent for ginseng cultivation.

Keywords

References

  1. Meijerman I, Beijnen JH, Schellens JH. Herb-drug interactions in oncology: focus on mechanisms of induction. Oncologist 2006;11:742-52. https://doi.org/10.1634/theoncologist.11-7-742
  2. Pereira DG, Antunes LM, Graf U, Spano MA. Protection by Panax ginseng C.A. Meyer against the genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster. Genet Mol Biol 2008;31:947-55. https://doi.org/10.1590/S1415-47572008000500024
  3. Yun TK. Experimental and epidemiological evidence of the cancer-preventive effects of Panax ginseng C. A. Meyer. Nutr Rev 1996;54:S71-81.
  4. Radad K, Gille G, Liu L, Rausch WD. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 2006;100:175-86. https://doi.org/10.1254/jphs.CRJ05010X
  5. Jang DJ, Lee MS, Shin BC, Lee YC, Ernst E. Red ginseng for treating erectile dysfunction: a systematic review. Br J Clin Pharmacol 2008;66:444-50. https://doi.org/10.1111/j.1365-2125.2008.03236.x
  6. Yun TK, Choi SY. Non-organ specific cancer prevention of ginseng: a prospective study in Korea. Int J Epidemiol 1998; 27:359-64. https://doi.org/10.1093/ije/27.3.359
  7. Proctor JT. Ginseng: old crop, new directions. In: Janick J, editor. Progress in new crops. Alexandria (VA): ASHS Press; 1996. p. 565-77.
  8. Kim JH, Jeon YH, Park H, Lee BD, Cho DH, Park BY, Khan Z, Kim YH. The root-lesion nematode, Pratylenchus subpenetrans, on ginseng (Panax ginseng) in Korea. Nematology 2006;8:637-9. https://doi.org/10.1163/156854106778613949
  9. Punja ZK. Fungal pathogens of American ginseng (Panax quinquefolium) in British Columbia. Can J Plant Pathol 1997; 19:301-6. https://doi.org/10.1080/07060669709500528
  10. Lee HJ, Park KC, Lee SH, Bang KH, Park HW, Hyun DY, Kang SW, Cha SW, Chung IM. Screening of antifungal Bacillus spp. against Alternaria blight pathogen (Alternaria panax) and anthracnose pathogen (Colletotrichum gloeosporioides) of ginseng. Korean J Med Crop Sci 2012;20:339-44. https://doi.org/10.7783/KJMCS.2012.20.5.339
  11. Kim WS, Park JS. Selection and control effect of environmental friendly organic materials for controlling the ginseng alternaria blight. Korean J Med Crop Sci 2013;21:388-93. https://doi.org/10.7783/KJMCS.2013.21.5.388
  12. Ohh SH. Diseases of ginseng: environmental and host effect on disease outbreak and growth of pathogens. J Ginseng Res 1981;5:73-84.
  13. Nakata K, Takimoto S. Studies on ginseng diseases in Korea. Bull Agric Exp Stn Chosen 1922;5:1-18.
  14. Li TS, Utkhede RS, Wardle DA. Chemical and biological control of leaf blight and root rot caused by Phytophthora cactorum in American ginseng. Can J Plant Pathol 1997;19: 297-300. https://doi.org/10.1080/07060669709500527
  15. Cho DH, Park KJ, Yu YH, Ohh SH, Lee HS. Root-rot development of 2-year old ginseng (Panax ginseng C.A. Meyer) caused by Cylindrocarpon destructans (Zinssm.) Scholten in the continuous cultivation field. Korean J Ginseng Sci 1995; 19:175-80.
  16. Rahman M, Punja ZK. Factors influencing development of root rot on ginseng caused by Cylindrocarpon destructans. Phytopathology 2005;95:1381-90. https://doi.org/10.1094/PHYTO-95-1381
  17. Matuo T, Miyazawa Y. Scientific name of Cylindrocarpon sp. causing root rot of ginseng. Ann Phytopathol Soc Jpn 1984; 50:649-52. https://doi.org/10.3186/jjphytopath.50.649
  18. Ahn IP, Lee YH. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. Mol Plant Microbe Interact 2001;14:496-507. https://doi.org/10.1094/MPMI.2001.14.4.496
  19. Seifert KA, McMullen CR, Yee D, Reeleder RD, Dovinson KF. Molecular differentiation and detection of ginseng-adapted isolates of the root rot fungus Cylindrocarpon destructans. Phytopathology 2003;93:1533-42. https://doi.org/10.1094/PHYTO.2003.93.12.1533
  20. Reeleder RD, Brammall RA. Pathogenicity of Pythium species, Cylindrocarpon destructans, and Rhizoctonia solani to ginseng seedlings in Ontario. Can J Plant Pathol 1994;16:311-6. https://doi.org/10.1080/07060669409500736
  21. Zinssmeister CL. Ramularia root-rots of ginseng. Phytopathology 1918;8:557-71.
  22. Korean Society of Plant Pathology. List of plant diseases in Korea. 5th ed. Suwon: Korean Society of Plant Pathology; 2009. p. 91, 284, 288.
  23. Chung HS. Ginseng disease. Research reports of the Korean Society of Plant Protection. Seoul: Korean Society of Plant Protection; 1979. p. 107-44
  24. Wellman RH. Problems in development, registration, and use of fungicides. Annu Rev Phytopathol 1977;15:153-63. https://doi.org/10.1146/annurev.py.15.090177.001101
  25. Butt TM, Jackson C, Magan N. Fungi as biocontrol agents: progress problems and potential. Wallingford: CABI Publishing;2001.
  26. Kim KY, Kim SD. Biological control of Pyricularia oryzae blast spot with the antibiotic substances produced by Bacillus sp. KL-3. J Microbiol Biotechnol 1997;25:396-402.
  27. Woo SM, Woo JU, Kim SD. Purification and characterization of the siderophore from Bacillus licheniformis K11, a multifunctional plant growth promoting rhizobacterium. Korean K Microbiol Biotechnol 2007;35:128-34.
  28. Imamura N, Ishikawa T, Ohtsuka T, Yamamoto K, Dekura M, Fukami H, Nishida R. An antibiotic from Penicillium sp. covering the cocoon of the leaf-rolling moth, Dactylioglypha tonica. Biosci Biotechnol Biochem 2000;64:2216-7. https://doi.org/10.1271/bbb.64.2216
  29. Jeong HG, Kim SD. Selection and antagonistic mechanism of Pseudomonas fluorescens 4059 against phytophthora blight disease. Korean J Microbiol Biotechnol 2004;32:312-6.
  30. Jeong DH, Park KD, Kim SH, Kim KR, Choi SW, Kim JT, Choi KH, Kim JH. Identification of Streptomyces sp. producing antibiotics against phytopathogenic fungi, and its structure. J Microbiol Biotechnol 2004;14:212-5.
  31. Lee IK, Kim CJ, Kim SD, Yoo ID. Antifungal antibiotic against fruit rot disease of red pepper from Streptomyces parvullus. Korean J Appl Microbiol Biotechnol 1990;18:142-7.
  32. Lee SY, Lee SB, Kim YK, Kim HG. Effect of agrochemicals on mycelial growth and spore germination of a hyperparasite, Ampelomyces quisqualis 94013 for controlling cucumber powdery mildew. Korean J Pestic Sci 2004;8:71-8.
  33. Jung HK, Kim JR, Woo SM, Kim SD. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontrol activity. Korean J Microbiol Biotechnol 2006;34:94-100.
  34. Neilands JB. Siderophores of bacteria and fungi. Microbiol Sci 1984;1:9-14.
  35. Paulitz TC, Loper JE. Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology 1991;81:930-5. https://doi.org/10.1094/Phyto-81-930
  36. Scher FM, Baker R. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 1982;72:1567-73. https://doi.org/10.1094/Phyto-72-1567
  37. Liu L, Kloepper JW, Tuzun S. Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology 1995;85:1064-8. https://doi.org/10.1094/Phyto-85-1064
  38. Ping L, Boland W. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 2004;9:263-6. https://doi.org/10.1016/j.tplants.2004.04.008
  39. Martinez-Abarca F, Herrera-Cervera JA, Bueno P, Sanjuan J, Bisseling T, Olivares J. Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol Plant Microbe Interact 1998;11:153-5. https://doi.org/10.1094/MPMI.1998.11.2.153
  40. Berdy J. Bioactive microbial metabolites. J Antibiot (Tokyo) 2005;58:1-26. https://doi.org/10.1038/ja.2005.1
  41. Kim BY, Ahn JH, Weon HY, Song J, Kim SI, Kim WG. Isolation and characterization of Bacillus species possessing antifungal activity against ginseng root rot pathogens. Korean J Pestic Sci 2012;16:357-63. https://doi.org/10.7585/kjps.2012.16.4.357
  42. Kim YS, Lee MS, Yeom JH, Song JG, Lee IK, Yeo WH, Yun BS. Screening of antagonistic bacteria for biological control of ginseng root rot. Kor J Mycol 2012;40:44-8. https://doi.org/10.4489/KJM.2012.40.1.044
  43. Han JH, Shim H, Shin JH, Kim KS. Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol J 2015;31:165-75. https://doi.org/10.5423/PPJ.OA.03.2015.0036
  44. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 2011;75:583-609. https://doi.org/10.1128/MMBR.00020-11
  45. Richard C. Chromobacterium violaceum, opportunist pathogenic bacteria in tropical and subtropical regions. Bull Soc Pathol Exot 1993;86:169-73.
  46. Martin PA, Gundersen-Rindal D, Blackburn M, Buyer J. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J Syst Evol Microbiol 2007;57(Pt 5):993-9. https://doi.org/10.1099/ijs.0.64611-0
  47. Young CC, Arun AB, Lai WA, Chen WM, Chao JH, Shen FT, Rekha PD, Kampfer P. Chromobacterium aquaticum sp. nov., isolated from spring water samples. Int J Syst Evol Microbiol 2008;58(Pt 4):877-80. https://doi.org/10.1099/ijs.0.65573-0
  48. Han XY, Han FS, Segal J. Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int J Syst Evol Microbiol 2008;58(Pt 6):1398-403. https://doi.org/10.1099/ijs.0.64681-0
  49. Kämpfer P, Busse HJ, Scholz HC. Chromobacterium piscinae sp. nov. and Chromobacterium pseudoviolaceum sp. nov., from environmental samples. Int J Syst Evol Microbiol 2009;59(Pt 10):2486-90. https://doi.org/10.1099/ijs.0.008888-0
  50. Soby SD, Gadagkar SR, Contreras C, Caruso FL. Chromobacterium vaccinii sp. nov., isolated from native and cultivated cranberry (Vaccinium macrocarpon Ait.) bogs and irrigation ponds. Int J Syst Evol Microbiol 2013;63(Pt 5): 1840-6. https://doi.org/10.1099/ijs.0.045161-0
  51. Menezes CB, Tonin MF, Correa DB, Parma M, de Melo IS, Zucchi TD, Destefano SA, Fantinatti-Garboggini F. Chromobacterium amazonense sp. nov. isolated from water samples from the Rio Negro, Amazon, Brazil. Antonie van Leeuwenhoek 2015;107:1057-63. https://doi.org/10.1007/s10482-015-0397-3
  52. Zhou S, Guo X, Wang H, Kong D, Wang Y, Zhu J, Dong W, He M, Hu G, Zhao B, et al. Chromobacterium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2016; 66:3890-6. https://doi.org/10.1099/ijsem.0.001284
  53. Park SK, Lee HY, Kim KC. Role of chitinase produced by Chromobacterium violaceum in the suppression of Rhizoctonia damping-off. Korean J Plant Pathol 1995;11:304-11.
  54. Park SK, Lee MC, Harman GE. The biocontrol activity of Chromobacterium sp. strain C-61 against Rhizoctonia solani depends on the productive ability of chitinase. Plant Pathol J 2005;21:275-82. https://doi.org/10.5423/PPJ.2005.21.3.275
  55. Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. Bioessays 2006;28:799-808. https://doi.org/10.1002/bies.20441
  56. Viterbo A, Ramot O, Chernin L, Chet I. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek 2002;81:549-56. https://doi.org/10.1023/A:1020553421740
  57. Chet I, Inbar J. Biological control of fungal pathogens. Appl Biochem Biotechnol 1994;48:37-43. https://doi.org/10.1007/BF02825358
  58. Neilands J. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 1995;270:26723-6. https://doi.org/10.1074/jbc.270.45.26723
  59. Kloepper JW, Leong J, Teintze M, Schroth MN. Enhanced plant growth by siderophores produced by plant growthpromoting rhizobacteria. Nature 1980;286:885-6. https://doi.org/10.1038/286885a0
  60. Sulochana MB, Jayachandra SY, Kumar SK, Dayanand A. Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS‐25. J Basic Microbiol 2012;54: 418-24.
  61. Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants: from soil to cell. Plant Physiol 1998;116:447-53. https://doi.org/10.1104/pp.116.2.447
  62. Rodríguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 1999; 17:319-39. https://doi.org/10.1016/S0734-9750(99)00014-2
  63. Telles-Pupulin AR, Diniz SP, Bracht A, Ishii-Iwamoto EL. Effects of fusaric acid on respiration in maize root mitochondria. Biol Plant 1996;38:421-9. https://doi.org/10.1007/BF02896673
  64. Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 2008;40:533-9. https://doi.org/10.1007/s10863-008-9166-6
  65. Tomasz A, Waks S. Mechanism of action of penicillin: triggering of the pneumococcal autolytic enzyme by inhibitors of cell wall synthesis. Proc Natl Acad Sci U S A 1975;72:4162-6. https://doi.org/10.1073/pnas.72.10.4162
  66. Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 1997;35:79-86. https://doi.org/10.1080/02681219780000961
  67. Hancock RE. Peptide antibiotics. Lancet 1997;349:418-22. https://doi.org/10.1016/S0140-6736(97)80051-7
  68. Müller WE, Heicke B, Zahn RK. Biological activity of $\beta$-phenylethanol and its derivates: V. Influence on DNA and RNA synthesis in different in vitro systems. Biochim Biophys Acta 1971;240:506-14. https://doi.org/10.1016/0005-2787(71)90707-6
  69. Leon LL, Miranda CC, De Souza AO, Duran N. Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 2001;48:449-50. https://doi.org/10.1093/jac/48.3.449
  70. Andrighetti-Frohner CR, Antonio RV, Creczynski-Pasa TB, Barardi CR, Simoes CM. Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz 2003;98:843-8. https://doi.org/10.1590/S0074-02762003000600023
  71. Ueda H, Nakajima H, Hori Y, Fujita T, Nishimura M, Goto T, Okuhara M. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J Antibiot (Tokyo) 1994; 47:301-10. https://doi.org/10.7164/antibiotics.47.301
  72. Melo PS, Maria SS, Vidal BC, Haun M, Duran N. Violacein cytotoxicity and induction of apoptosis in V79 cells. In Vitro Cell Dev Biol Anim 2000;36:539-43. https://doi.org/10.1290/1071-2690(2000)036<0539:VCAIOA>2.0.CO;2
  73. Souza AO, Aily DC, Sato DN, Duran N. In vitro activity of violacein against Mycobacterium tuberculosis H37Ra. Rev Inst Adolfo Lutz 1999;58:59-62.
  74. Michaels R, Corpe WA. Cyanide formation by Chromobacterium violaceum. J Bacteriol 1965;89:106-12.
  75. Paker WL, Rathnum ML, Johnson JH, Wells JS, Principe PA, Sykes RB. Aerocyanidin, a new antibiotic produced by Chromobacterium violaceum. J Antibiot (Tokyo) 1988;41:454-60. https://doi.org/10.7164/antibiotics.41.454