DOI QR코드

DOI QR Code

Localization of solar-hydrogen power plants in the province of Kerman, Iran

  • Mostafaeipour, Ali (Department of Industrial Engineering, Yazd University) ;
  • Sedaghat, Ahmad (Department of Mechanical Engineering, Isfahan University of Technology) ;
  • Qolipour, Mojtaba (Department of Industrial Engineering, Yazd University) ;
  • Rezaei, Mostafa (Department of Industrial Engineering, Yazd University) ;
  • Arabnia, Hamid R. (Department of Computer Science, University of Georgia) ;
  • Saidi-Mehrabad, Mohammad (Department of Industrial Engineering, Iran University of Science and Technology) ;
  • Shamshirband, Shahaboddin (Department of Management & Information Technology, Ton Duc Thang University) ;
  • Alavi, Omid (Department of Electrical Engineering, K.N. Toosi University of Technology)
  • Received : 2017.03.13
  • Accepted : 2017.12.02
  • Published : 2017.06.25

Abstract

This research presents an in-depth analysis of location planning of the solar-hydrogen power plants for electricity production in different cities situated in Kerman province of Iran. Ten cities were analyzed in order to select the most suitable location for the construction of a solar-hydrogen power plant utilizing photovoltaic panels. Data envelopment analysis (DEA) methodology was applied to prioritize cities for installing the solar-hydrogen power plant so that one candidate location was selected for each city. Different criteria including population, distance to main road, flood risk, wind speed, sunshine hours, air temperature, humidity, horizontal solar irradiation, dust, and land costare used for the analysis. From the analysis, it is found that among the candidates' cities, the site of Lalezar is ranked as the first priority for the solar-hydrogen system development. A measure of validity is obtained when results of the DEA method are compared with the results of the technique for ordering preference by similarity to ideal solution (TOPSIS). Applying TOPSIS model, it was found that city of Lalezar ranked first, and Rafsanjan gained last priority for installing the solar-hydrogen power plants. Cities of Baft, Sirjan, Kerman, Shahrbabak, Kahnouj, Shahdad, Bam, and Jiroft ranked second to ninth, respectively. The validity of the DEA model is compared with the results of TOPSIS and it is demonstrated that the two methods produced similar results. The solar-hydrogen power plant is considered for installation in the city of Lalezar. It is demonstrated that installation of the proposed solar-hydrogen system in Lalezar can lead to yearly yield of 129 ton-H2 which covers 4.3% of total annual energy demands of the city.

Keywords

References

  1. Ahmad, G.E. and Shenawy, E.T.E. (2006), "Optimized photovoltaic system for hydrogen production", Renew. Energy, 31(7), 1043-1054. https://doi.org/10.1016/j.renene.2005.05.018
  2. Aiche-Hamane, L., Belhamel, M., Benyoucef, B. and Hamane, M. (2009), "Feasibility study of hydrogen production from wind power in the region of Ghardaia", J. Hydrog. Energy, 34(11), 4947-4952. https://doi.org/10.1016/j.ijhydene.2008.12.037
  3. Alavi, O., Mostafaeipour, A. and Qolipour, M. (2016a), "Analysis of hydrogen production from wind energy in the southeast of Iran", J. Hydrog. Energy, 41(34), 15158-15171. https://doi.org/10.1016/j.ijhydene.2016.06.092
  4. Alavi, O., Sedaghat, A. and Mostafaeipour, A. (2016b), "Sensitivity analysis of different wind speed distribution models with actual and truncated wind data: a case study for Kerman, Iran", Energy Convers. Manage., 120, 51-61. https://doi.org/10.1016/j.enconman.2016.04.078
  5. Alzua-Sorzabal, A., Zurutuza, M., Rebon, F. and Gerrikagoitia, J.K. (2015), "Obtaining the efficiency of tourism destination website based on data envelopment analysis", Proc. Soc. Behav. Sci., 175, 58-65. https://doi.org/10.1016/j.sbspro.2015.01.1174
  6. Anderson, P. and Peterson, N. (1993), "A procedure for ranking efficient units in DEA", Manage. Sci., 39(10), 1261-1264. https://doi.org/10.1287/mnsc.39.10.1261
  7. Bak, T., Nowotny, J., Rekas, M. and Sorrell, C.C. (2002), "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects", J. Hydrog. Energy, 27(10), 991-1022. https://doi.org/10.1016/S0360-3199(02)00022-8
  8. Balabel, A. and Zaky, M.S. (2011), "Experimental investigation of solar-hydrogen energy system performance", J. Hydrog. Energy, 36(8), 4653-4663. https://doi.org/10.1016/j.ijhydene.2011.01.040
  9. Benton, J., Bai, J. and Wang, T. (2013), "Enhancement in solar hydrogen generation efficiency using a GaN-based nanorod structure", Appl. Phys. Lett., 102(17), 1-4.
  10. Biosciences (BIOSCIENCESWORLD) (2010), International Conference, 112-118.
  11. Boudries, R. (2013), "Analysis of solar hydrogen production in Algeria: Case of an electrolyzer-concentrating photovoltaic system", J. Hydrog. Energy, 38(26), 11507-11518. https://doi.org/10.1016/j.ijhydene.2013.04.136
  12. Carnevale, E.A., Lombardi, L. and Zanchi, L. (2016), "Wind and solar energy: A comparison of costs and environmental impacts", Adv. Energy Res., 4(2), 121-146. https://doi.org/10.12989/eri.2016.4.2.121
  13. Charnes, A., Cooper, W.W. and Rhodes, E. (1987), "Measuring the efficiency of decision making units", Eur. J. Operat. Res., 2(6), 429-444.
  14. Demirel, T., Demirel, N.C. and Kahraman, C. (2010), "Multi-criteria warehouse location selection using choquet integral", Exp. Syst. Appl., 37(5), 3943-3952. https://doi.org/10.1016/j.eswa.2009.11.022
  15. Demirhan, H., Mentes, T. and Atilla, M. (2013), "Statistical comparison of global solar radiation estimation models over Turkey", Energy Convers. Manage., 68, 141-148. https://doi.org/10.1016/j.enconman.2013.01.004
  16. Deokattey, S., Bhanumurthy, K., Vijayan, P.K. and Dulera, I.V. (2013), "Hydrogen production using high temperature reactors: An overview", Adv. Energy Res., 1(1), 13-33. https://doi.org/10.12989/eri.2013.1.1.013
  17. Dhillon, S.S. and Tan, K.T. (2016), "Optimization of biodiesel production via methyl acetate reaction from cerberaodollam", Adv. Energy Res., 4(4), 325-337. https://doi.org/10.12989/eri.2016.4.4.325
  18. Dicks, A.L. (1996), "Hydrogen generation from natural gas for the fuel cell systems of tomorrow", J. Pow. Sour., 61(1), 113-124. https://doi.org/10.1016/S0378-7753(96)02347-6
  19. Dincer, I. and Ratlamwala, T.A.H. (2013), "Development of novel renewable energy based hydrogen production systems: A comparative study", Energy Convers. Manage., 72, 77-87. https://doi.org/10.1016/j.enconman.2012.08.029
  20. Dou, X.X. and Andrews, J. (2012), "Design of a dynamic control system for standalone solar-hydrogen power generation", Proc. Eng., 49, 107-115. https://doi.org/10.1016/j.proeng.2012.10.118
  21. Ennetta, R., Yahya, A. and Said, R. (2016), "Feasibility of a methane reduced chemical kinetics mechanism in laminar flame velocity of hydrogen enriched methane flames simulations", Adv. Energy Res., 4(3), 213-221. https://doi.org/10.12989/eri.2016.4.3.213
  22. Fereydooni, F. (2013), "Technical and economic analysis of photovoltaic power systems in Yazd (case study)", M.Sc. Dissertation, Yazd University, Iran.
  23. Ferrari, M.L., Rivarolo, M. and Massardo, A.F. (2016), "Hydrogen production system from photovoltaic panels: Experimental characterization and size optimization", Energy Convers. Manage., 116, 194-202. https://doi.org/10.1016/j.enconman.2016.02.081
  24. Gamboa, G. and Munda G. (2007), "The problem of wind farm location: a social multi criteria evaluation framework", Energy Pol., 35(3), 1564-1583. https://doi.org/10.1016/j.enpol.2006.04.021
  25. Genwa, K.R. and Sagar, C.P. (2013), "Energy efficiency, solar energy conversion and storage in photo galvanic cell", Energy Convers. Manage., 66, 121-126. https://doi.org/10.1016/j.enconman.2012.10.007
  26. Gertz, J. (1980), "On the potential of solar energy conversion into hydrogen and/or other fuels", J. Hydrog. Energy, 5, 269-280. https://doi.org/10.1016/0360-3199(80)90071-3
  27. Ghosh, P., Emonts, B. Jansen, H., Mergel, J. and Stolten, D. (2003), "Ten years of operational experience with a hydrogen-based renewable energy supply system", Sol. Energy, 75(6), 469-478. https://doi.org/10.1016/j.solener.2003.09.006
  28. Goodarzi, M. and Aghajani, M. (2014), "Social and behavioral sciences", Proc., 141, 1363-1368.
  29. Gupta Ram, B. (2009), Hydrogen Fuel: Production, Transport, and Storage, Boca Raton, Taylor and Francis Group.
  30. Huang, C. (2013), "Solar hydrogen production via pulse electrolysis of aqueous ammonium sulfite solution", Sol. Energy, 91, 394-401. https://doi.org/10.1016/j.solener.2012.09.009
  31. Ismail, K.A.R., Zanardi, M.A. and Lino, F.A.M. (2016), "Modeling and validation of a parabolic solar collector with a heat pipe absorber", Adv. Energy Res., 4(4), 299-323. https://doi.org/10.12989/eri.2016.4.4.299
  32. Kar, S.K. and Gopakumar, K. (2015), "Progress of renewable energy in India", Adv. Energy Res., 3(2), 97-115. https://doi.org/10.12989/eri.2015.3.2.097
  33. Khalilnejad, A. and Riahy, G.H. (2014), "A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer", Energy Convers. Manage., 80, 398-406. https://doi.org/10.1016/j.enconman.2014.01.040
  34. Khorasanizadeh, H., Mohammadi, K. and Mostafaeipour, A. (2014), "Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran", Energy Convers. Manage., 78, 805-814. https://doi.org/10.1016/j.enconman.2013.11.048
  35. Kose, A. and Oncel, S.S. (2014), "Biohydrogen production from engineered microalgae Chlamydomonaseinhardtii", Adv. Energy Res., 2(1), 1-9. https://doi.org/10.12989/eri.2014.2.1.001
  36. Larminie, J., Dicks, A. and McDonald, M.S. (2003), Fuel Cell Systems Explained, Wiley, New York, U.S.A.
  37. Linkous, C.A. and Muradov, N.Z. (2001), Closed Cycle Photocatalytic Process for Decomposition of Hydrogen Sulfide to its Constituent Elements, Google Patents.
  38. Liu, Z., Qiu, Z., Luo, Y., Mao, Z. and Wang, C. (2010), "Operation of first solar-hydrogen system in China", J. Hydrog. Energy, 35(7), 2762-2766. https://doi.org/10.1016/j.ijhydene.2009.05.027
  39. Lourenzutti, R. and Krohling, R.A. (2014), "The hellinger distance in multicriteria decision making: An illustration to the TOPSIS and TODIM methods", Exp. Syst. Appl., 41(9), 4414-4421. https://doi.org/10.1016/j.eswa.2014.01.015
  40. Marquez, F., Masa, A., Cotto, M., Garcia, A., Duconge, J., Campo, T., Jose, A.G. and Morant, C. (2014), "Photocatalytic hydrogen production by water splitting using novel catalysts under UV-vis light irradiation", Adv. Energy Res., 2(1), 33-45. https://doi.org/10.12989/eri.2014.2.1.033
  41. Momirlan, M. and Veziroglu, T.N. (2002), "Current status of hydrogen energy", Renew. Sustain. Energy Rev., 6(1), 141-179. https://doi.org/10.1016/S1364-0321(02)00004-7
  42. Momirlan, M. and Veziroglu, T.N. (2005), "The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet", J. Hydrog. Energy., 30(7), 795-802. https://doi.org/10.1016/j.ijhydene.2004.10.011
  43. Mostafaeipour, A. and Abesi, S. (2010), Wind Turbine Productivity and Development in Iran.
  44. Mostafaeipour, A., Bardel, B., Mohammadi, K., Sedaghat, A. and Dinpashoh, Y. (2014), "Economic evaluation for cooling and ventilation of medicine storage warehouses utilizing wind catchers", Renew. Sustain. Energy Rev., 38, 12-19. https://doi.org/10.1016/j.rser.2014.05.087
  45. Mostafaeipour, A., Khayyami, M., Sedaghat, A., Mohammadi, K., Shamshirband, S., Sehati, M.A. and Gorakifard, E. (2016a), "Evaluating the wind energy potential for hydrogen production: A case study", J. Hydrog. Energy, 41(15), 6200-6210. https://doi.org/10.1016/j.ijhydene.2016.03.038
  46. Mostafaeipour, A., Qolipour, M. and Mohammadi, K. (2016b), "Evaluation of installing photovoltaic plants using a hybrid approach for Khuzestan province, Iran", Renew. Sustain. Energy Rev., 60, 60-74. https://doi.org/10.1016/j.rser.2016.01.105
  47. Motameni, A. (2002), "Designing a dynamic productivity model based on data envelopment analysis (DEA)", Ph.D. Dissertation, Tehran Tarbiat Modarres University, Iran.
  48. Mukhopadhyay, S. and Ghosh, S. (2016), "Solar tower combined cycle plant with thermal storage: Energy and exergy analyses", Adv. Energy Res., 4(1), 29-45. https://doi.org/10.12989/eri.2016.4.1.029
  49. Ni, M. (2013), "Methane carbon dioxide reforming for hydrogen production in a compact reformer-a modeling study", Adv. Energy Res., 1(1), 53-78. https://doi.org/10.12989/eri.2013.1.1.053
  50. Padin, J., Veziroglu, TN. and Shahin, A. (2000), "A hybrid solar high temperature hydrogen production system", J. Hydrog. Energy, 25(4), 295-317. https://doi.org/10.1016/S0360-3199(99)00028-2
  51. Pestana Barros, C. and Wanke, P. (2015), "An analysis of African airlines efficiency with two-stage TOPSIS and neural networks", J. Air Transp. Manage., 44-45, 90-102. https://doi.org/10.1016/j.jairtraman.2015.03.002
  52. Qolipour, M., Mostafaeipour, A., Shamshirband, S., Alavi, O. and Goudarzi, H. (2016), "Evaluation of wind power generation potential using a three-hybrid approach for households in Ardebil province, Iran", Energy Convers. Manage., 118, 295-305. https://doi.org/10.1016/j.enconman.2016.04.007
  53. Ramage, M.P. (2004), The Hydrogen Economy: Opportunities, Costs, Barriers and R&D Needs, National Academy Press, Washington, U.S.A.
  54. Rzayeva, M.P., Salamov, O.M. and Kerimov, M.K. (2001), "Modeling to get hydrogen and oxygen by solar water electrolysis", J. Hydrog. Energy, 26(3), 195-201. https://doi.org/10.1016/S0360-3199(00)00063-X
  55. Saaty, T.L. (2000), Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process, AHP Series, 5, RWS Publications, Pittsburgh, U.S.A.
  56. Sadeghi, S. (2012), "Utilizing data envelopment analysis (DEA) to prioritize the wind turbines installations in East Azerbaijan province of Iran", M.Sc. Dissertation, Yazd University, Iran.
  57. Satyapal, S., Petrovicm J., Read, C., Thomas, G. and Ordaz, G. (2007), "The US department of energy's national hydrogen storage project: Progress towards meeting hydrogen-powered vehicle requirements, catalysis today", 120(3), 246-256. https://doi.org/10.1016/j.cattod.2006.09.022
  58. Scamman, D., Bustamante, H., Hallett, S. and Newborough, M. (2014), "Off-grid solar-hydrogen generation by passive electrolysis", J. Hydrog. Energy, 39(35), 19855-19868. https://doi.org/10.1016/j.ijhydene.2014.10.021
  59. Shabani, B. and Andrews, J. (2011), "An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system", J. Hydrog. Energy, 36(9), 5442-5452. https://doi.org/10.1016/j.ijhydene.2011.02.003
  60. Sherif, S.A., Barbir, F. and Veziroglu, T. (2005), "Wind energy and the hydrogen economy-review of the technology", Sol. Energy, 78(5), 647-660 https://doi.org/10.1016/j.solener.2005.01.002
  61. Tansel, Y. (2014), "A TOPSIS based design of experiment approach to assess company ranking", Appl. Math. Comput., 227, 630-647.
  62. Torres, L.A., Rodriguez, F.J. and Sebastian, P.J. (1998), "Simulation of solar-hydrogen-fuel cell system: results for different locations in Mexico", J. Hydrog. Energy, 23(11), 1005-1009. https://doi.org/10.1016/S0360-3199(98)00024-X
  63. Van De Krol, R., Liang, Y. and Schoonman, J. (2008), "Solar hydrogen production with nanostructured metal oxides", J. Mater. Chem., 18(20), 2311-2320. https://doi.org/10.1039/b718969a
  64. Veziroglu, T.N. (2008), "21st century's energy: Hydrogen energy system", Energy Convers. Manage., 49(7), 1820-1831. https://doi.org/10.1016/j.enconman.2007.08.015
  65. Wang, Z.X. and Wang, Y.U. (2014), "Evaluation of the provincial competitiveness of the Chinese high-tech industry using an improved TOPSIS method", Exp. Syst. Appl., 41(6), 2824-2831. https://doi.org/10.1016/j.eswa.2013.10.015
  66. Winter, C.J. (1987), "Hydrogen energy-expected engineering breakthroughs", J. Hydrog. Energy, 12(8), 521-546. https://doi.org/10.1016/0360-3199(87)90012-7
  67. Zabihi, M.S., Asl-Soleimani, E. and Farhangi, S. (1998), "Photovoltaic manufacturing, system design and application trend in Iran", Renew. Energy, 15(1-4), 496-501. https://doi.org/10.1016/S0960-1481(98)00212-2
  68. Zhou, P., Ang, B.W. and Poh, K.L. (2008), "A survey of data envelopment analysis in energy and environmental studies", Eur. J. Operat. Res., 189(1), 1-18. https://doi.org/10.1016/j.ejor.2007.04.042
  69. .
  70. .
  71. .
  72. .
  73. .
  74. .
  75. .
  76. .
  77. .
  78. .

Cited by

  1. Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran vol.13, pp.3, 2017, https://doi.org/10.1007/s11708-019-0635-x
  2. An application of LAPO: Optimal design of a stand alone hybrid system consisting of WTG/PV/diesel generator/battery vol.7, pp.1, 2017, https://doi.org/10.12989/eri.2020.7.1.067
  3. Sensitivity analysis of criteria to optimize wind farm localizing: A case study vol.44, pp.3, 2020, https://doi.org/10.1177/0309524x19849848
  4. Comprehensive Investigation of Solar-Based Hydrogen and Electricity Production in Iran vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6627491
  5. A novel integrated approach for ranking solar energy location planning: a case study vol.19, pp.3, 2021, https://doi.org/10.1108/jedt-04-2020-0123
  6. Hybrid wind-municipal solid waste biomass power plant location selection considering waste collection problem: a case study vol.16, pp.8, 2017, https://doi.org/10.1080/15567249.2021.1965261