DOI QR코드

DOI QR Code

An Study on Pole Piece Shape for Improving Torque Ripple of Magnetic Gears

마그네틱 기어의 토크리플 개선을 위한 폴피스 형상 연구

  • Received : 2017.09.05
  • Accepted : 2017.12.15
  • Published : 2017.12.31

Abstract

Magnetic gears are magnetically coupled to the input side and the output side of the rotary machine to transmit power without mechanical contact. The magnetic gear consists of an inner rotor, an outer rotor and pole pieces. Torque ripple occurs due to the difference in reluctance between the two rotors and the pole pieces during power transmission. Torque ripple is a cause of the noise and vibration of the rotary machine, so it is necessary to minimize it. In this paper, we propose a shape that cuts the corner of the pole piece and apply a fillet to reduce torque ripple. We used a two-dimensional finite element analysis method to compare and analyze the torque ripple of the magnetic gears according to the change of the fillet parameters and to find the pole piece shape with excellent torque ripple.

마그네틱 기어는 기계적인 접촉 없이 회전 기계의 입력측과 출력측이 자기적으로 결합되어 동력을 전달한다. 마그네틱 기어는 내측회전자, 외측회전자, 폴피스로 구성되어 있으며, 동력전달 시 두 회전체와 폴피스 사이의 자기저항 차이로 토크리플이 발생하게 된다. 이러한 토크리플은 회전기계의 소음과 진동의 원인이 되기 때문에 최소화하는 방안이 필요하다. 본 논문에서는 토크리플 저감 방안으로 폴피스의 각진 모서리를 깎아 필렛을 적용한 형상을 제안하였다. 2D 유한요소해석법을 활용하여 필렛 파라미터 변화에 따른 마그네틱 기어의 토크리플을 비교 및 분석하고 토크리플이 우수한 폴피스 형상을 모색하였다.

Keywords

References

  1. H. Huh and J. Lee, "A Study on The Modeling and Operation Control of A Variable Speed Synchronous Wind Power System," J. of the Korea Institute of Electronic Communication Science, vol. 10, no. 8, 2015, pp. 935-944. https://doi.org/10.13067/JKIECS.2015.10.8.935
  2. K. Lee, W. Cho, J. Back, and I. Choy, "Design and Verification of Disturbace Observer based Controller for Windturbine with Two Cooperative Generators," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 2, 2017, pp. 301-308. https://doi.org/10.13067/JKIECS.2017.12.2.301
  3. L. Shah, A. Cruden, and B. Williams, "A Variable Speed Magnetic Gear Box Using Contra-Rotating Input Shafts," IEEE Trans. Magnetics, vol. 47, no. 2, 2011, pp. 431-438. https://doi.org/10.1109/TMAG.2010.2097273
  4. K. Atallah and D. Howe, "A Novel High-Performance Magnetic Gear," IEEE Trans. Magnetics, vol. 37, no. 4, July, 2001, pp. 2844-2846. https://doi.org/10.1109/20.951324
  5. H. Shin and J. Chang, "Analysis of Coaxial Magnetic Gear with Low Gear Ratios for Application in Counter Rotating Systems," J. of Magnetics, vol. 20, no. 2, 2015, pp. 186-192. https://doi.org/10.4283/JMAG.2015.20.2.186
  6. E. Park, S. Kim, S. Jung, and Y. Kim, "Correlation Analysis between Air Gaps and Torque Characteristics of Magnetic Gear," 2016 Electrical Machinery and Energy Conversion Systems Society Spring Conf. of the Korean Institute of Electrical Engineers, Jeju, Korea, Mar., 2016, pp. 223-225.
  7. S. Kim, E. Park, and Y. Kim, "Optimal Design of Ferromagnetic Pole Pieces for Transmission Torque Ripple Reduction in a Magnetic-Geared Machine," J. of Electrical Engineering & Technology, vol. 11, no. 6, 2016, pp. 1628-1633. https://doi.org/10.5370/JEET.2016.11.6.1628
  8. Y. D. Yao, D. R. Huang, C. C. Hsieh, D. Y. Chiang, S. J. Wang, and T. F. Ying, "The Radial Magnetic Coupling Studies of Perpendicular Magnetic Gears," IEEE Trans. Magnetics, vol. 32, no. 5, Sept., 1996, pp. 5061-5063. https://doi.org/10.1109/20.539490
  9. E. P. Furlani, "Two-dimensional Analysis for the Coupling of Magnetic Gears," IEEE Trans. Magnetics, vol. 3, no. 3, 1997, pp. 2317-2321.
  10. T. Lubin, S. Mezani, and A. Rezzoug, "Analytical Computation of the Magnetic Field Distribution in a Magnetic Gear," IEEE Trans. Magnetics, vol. 46, no. 7, 2010, pp. 2611-2621. https://doi.org/10.1109/TMAG.2010.2044187
  11. M. Jeong, C. Moon, H. Kim, Y. Chang, and T. Park, "A Study on Design of 50kW PMSG for Microgrid Application," J. of the Korea Institute of Electronic Communication Science, vol. 9, no. 4, 2014, pp. 527-536. https://doi.org/10.13067/JKIECS.2014.9.4.527
  12. K. Lee and Y. Kim, "A Study on The Reduction of Cogging Force of Stationary Discontinuous Armature Permanent Magnet Linear Synchronous Motor by Change in Auxiliary Pole," J. of the Korea Institute of Electronic Communication Science, vol. 5, no. 6, 2010, pp. 613-619.
  13. Y. Kim and J. Kim, "The Analysis of Skewed Armature Effect for Reduction of End Edge Cogging Force of Stationary Discontinuous Armature PMLSM," J. of the Korea Institute of Electronic Communication Science, vol. 9, no. 2, 2014, pp. 243-248. https://doi.org/10.13067/JKIECS.2014.9.2.243
  14. K. Lee, W. Cho, J. Back, and I Choy, "Design and Verification of Disturbace Observer based Controller for Windturbine with Two Cooperative Generators," J. of Korea Institute of Electronic Communication Science, vol. 12, no. 2, 2017, pp. 301-308. https://doi.org/10.13067/JKIECS.2017.12.2.301