DOI QR코드

DOI QR Code

A Comparison of Offshore Met-mast and Lidar Wind Measurements at Various Heights

해상기상탑과 윈드 라이다의 높이별 풍황관측자료 비교

  • 김지영 (한국전력공사 전력연구원) ;
  • 김민석 (한국전력공사 전력연구원)
  • Received : 2017.02.07
  • Accepted : 2017.02.14
  • Published : 2017.02.28

Abstract

There is a need to substitute offshore met-mast with remote sensing equipment such as wind lidar since the initial installation and O&M costs for offshore met-mast are quite high. In this study, applicability of wind lidar is verified by intercomparison test of wind speed and direction data from offshore met-mast and wind lidar for simultaneous operational period. Results at various heights show no statistical difference in trend and size and data from wind lidar is found to be more accurate and have less error than data from offshore met-mast where error from structural shading effect is significant.

풍력 개발을 위한 해상기상탑은 초기 설치비와 유지보수비가 크기 때문에 윈드 라이다와 같은 원격관측장비를 이용하여 기상탑을 대체할 필요가 있다. 본 연구에서는 해상기상탑에서 윈드 라이다를 동시 운영하고 수집된 풍속 및 풍향의 관측결과를 상호 비교하여 윈드 라이다의 적용성을 검증하였다. 높이별 풍속 및 풍향 관측결과 두 자료간의 크기 및 경향 등의 통계적 특성 차이는 거의 없으며, 기상탑 관측자료는 구조물 차폐영향에 의한 오차가 발생하는 반면, 윈드 라이다는 오차가 없는 보다 정확한 자료를 얻을 수 있는 것을 확인하였다.

Keywords

References

  1. IEC (2005). IEC 61400-12-1: Wind turbines - Power performance measurements of electricity producing wind turbines, Edition 1.0.
  2. Kim, D., Kim, T., Oh, G., Huh, J. and Ko, K. (2016). A comparison of ground-based LiDAR and met mast wind measurements for wind resource assessment over various terrain conditions. Journal of Wind Engineering and Industrial Aerodynamics, 158, 109-121. https://doi.org/10.1016/j.jweia.2016.09.011
  3. Kim, H.-G., Kim, D.-H., Jeon, W.-H. and Choi, H.-J. (2011). Comparative validation of WindCube LIDAR and Scintec SODAR for wind resource assessment - Remote sensing campaign at Jamsil. New & Renewable Energy, 7(2), 43-50. https://doi.org/10.7849/ksnre.2011.7.2.043
  4. Kim, J.-Y. and Kim, K.-Y. (2016). Reconstructing long-term wind data at an offshore met-mast location using cyclostationary empirical orthogonal functions. Journal of Wind Engineering and Industrial Aerodynamics, 156, 146-158. https://doi.org/10.1016/j.jweia.2016.07.017
  5. Kim, M. S., Kim, J. Y., Kwak, J. Y. and Kang, K. S. (2015). Analysis of working time at the test site of southwest offshore wind project in Korea based on weather window. Journal of Korean Society of Coastal and Ocean Engineers, 27(5), 358-363. https://doi.org/10.9765/KSCOE.2015.27.5.358
  6. Ko, D. H., Jeong, S. T., Cho, H., Kim, J. Y. and Kang, K. S. (2012). Error analysis on the offshore wind speed estimation using HeMOSU-1 data. Journal of Korean Society of Coastal and Ocean Engineers, 24(5), 326-332. https://doi.org/10.9765/KSCOE.2012.24.5.326
  7. Kumer, V.-M., Reuder, J. and Furevik, B. R. (2014). A comparison of LiDAR and radiosonde wind measurements. Energy Procedia, 53, 214-220. https://doi.org/10.1016/j.egypro.2014.07.230
  8. Measnet (2016). Evaluation of site-specific wind conditions, Version 2.
  9. Schmitt, C., Wagner, L. and Boquet, M. (2013). Measuring wind profiles in complex terrain using doppler wind LiDAR systems with $FCR^{(TM)}$ and CFD implementations. EWEA 2013.
  10. Westerhellweg, A., Canadillas, B., Beeken, A. and Neumann, T. (2010). One year of lidar measurements at FINO1-Platform: Comparison and verification to met-mast data. 10th German Wind Energy Conference DEWEK 2010.