DOI QR코드

DOI QR Code

Preparation and Characterizations of Sulfonated Graphene Oxide (sGO)/Nafion Composite Membranes for Polymer Electrolyte Fuel Cells

고분자 전해질막 연료전지(PEMFCs)용 Sulfonated Graphene Oxide (sGO)/Nafion 복합막의 제조 및 특성분석

  • Shin, Mun-Sik (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • 신문식 (상명대학교 공과대학 환경공학과) ;
  • 강문성 (상명대학교 공과대학 환경공학과) ;
  • 박진수 (상명대학교 공과대학 환경공학과)
  • Received : 2017.02.21
  • Accepted : 2017.02.23
  • Published : 2017.02.28

Abstract

In this study, the composite membranes prepared by sulfonated graphene oxide (sGO) and Nafion were developed as proton exchange membranes (PEMs) for polymer electrolyte membrane fuel cells (PEMFCs). The sGO/Nafion composite membranes were prepared by mixing Nafion solution with the sGO dispersed in a binary solvent system to improve dispersity of sGO. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, TGA and SEM, etc. As a result, the binary solvent system, i.e., ortho-dichlorobenzene (ODB) and N,N-dimethylacetamide (DMAc), were used to obtain high dispersion of sGO particles in Nafion solution, and the ionic conductivity of the sGO/Nafion composite membrane showed $0.06Scm^{-1}$ similar to other research results at lower water uptake, 11 wt%.

본 연구에서는 고분자전해질 연료전지(PEMFC)의 전해질막의 성능향상을 위하여 sulfonated graphene oxide(sGO)와 Nafion을 이용하여 복합막을 개발하였다. sGO/Nafion 복합막 안의 sGO의 균일한 분산을 위해 각기 다른 용매를 사용한 sGO 분산액과 Nafion 현탁액을 혼합하여 복합막들을 제조하였다. 제조된 복합막들의 물성 및 전기화학적 특성을 평가하기 위해 SEM, FT-IR, 이온 전도도, 이온 교환 용량, 함수율, 열안정성 등을 수행하였다. 연구 결과 ODB와 DMAc 혼합 용매로 sGO를 분산하여 고분자 용액 내에서의 분산도를 향상시켰으며, 이 결과 11 wt%의 낮은 함수율에도 불구하고, $0.06Scm^{-1}$의 기존 연구와 유사한 이온 전도도를 나타내었다.

Keywords

References

  1. A. Kraytsberg and E. E. Yair, "Review of advanced materials for proton exchange membrane fuel cells", Energy. Fuel., 12, 7303 (2014).
  2. E. Bakangura, L. Wu, L. Ge, Z. Yang, and T. Xu, "Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives." Prog. Polym. Sci., 57, 103 (2016). https://doi.org/10.1016/j.progpolymsci.2015.11.004
  3. H. Zhang and P. K. Shen, "Recent development of polymer electrolyte membranes for fuel cells", Chem. Rev., 12, 2780 (2012).
  4. L. Zhang, S.-R. Chae, Z. Hendren, J.-S. Park, and M. R. Wiesner, "Recent advances in proton exchange membranes for fuel cell applications", Chem. Eng. J., 204, 87 (2012).
  5. K. Sopian and W. R. Wan Daud, "Challenges and future developments in proton exchange membrane fuel cells", Renew. Energ., 31, 719 (2006). https://doi.org/10.1016/j.renene.2005.09.003
  6. V. S. Bagotsky, "Proton-Exchange Membrane Fuel Cells,", pp. 41-69, John Wiley & Sons, New York, NY (2012).
  7. H. J. Lee, Y.-W. Choi, T.-H. Yang, and B. C. Bae, "Hydrocarbon composite membranes with improved oxidative stability for PEMFC", J. Korean Electrochem. Soc., 17, 44 (2014). https://doi.org/10.5229/JKES.2014.17.1.44
  8. J. O. Yuk, S. J. Lee, T.-H. Yang, and B. C. Bae, "Synthesis and characterization of multi-block sulfonated poly(arylene ether sulfone) polymer membrane with different hydrophilic moieties for PEMFC", J. Korean Electrochem. Soc., 18, 75 (2015). https://doi.org/10.5229/JKES.2015.18.2.75
  9. S. Y. Lee, H. J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells", J. Membr. Sci., 26, 1 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.1
  10. G. Nawn, G. Pace, S. Lavina, K. Vezzu, E. Negro, F. Bertasi, and V. Di Noto, "Nanocomposite membranes based on polybenzimidazole and $ZrO_2$ for high-temperature proton exchange membrane fuel cells.", Chemsuschem., 8, 1381 (2015). https://doi.org/10.1002/cssc.201403049
  11. C. Lee, S. M. Jo, J. Choi, K. Y. Baek, Y. B. Truong, I. L. Kyratzis, and Y. G. Shul, "$SiO_2$/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells." J. Membr. Sci., 10, 3665 (2013).
  12. D. Cozzi, C. de Bonis, A. D'Epifanio, B. Mecheri, A. C. Tavares, and S. Licoccia, "Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications." J. Power. Sources., 248, 1127 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.070
  13. H. Guo and A. S. Barnard, "Proton transfer in the hydrogenbonded chains of lepidocrocite: a computational study", Phys. Chem. Chem. Phys., 13, 17864 (2011). https://doi.org/10.1039/c1cp22508a
  14. L. Zhang, S.-R. Chae, S. Lin, and M. R. Wiesner, "Proton-conducting composite membranes derived from ferroxane-polyvinyl alcohol complex", Environ. Eng. Sci., 29, 124 (2012). https://doi.org/10.1089/ees.2011.0270
  15. M.-S. Shin, G.-H Oh, and J.-S. Park, "Preparation and characterizations of ferroxane-nafion composite membranes for PEMFC", Membr. J., 26, 135 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.135
  16. J. H. Jung, J. H. Jeon, V. Sridhar, and I. K. Oh, "Electro-active graphene-Nafion actuators.", Carbon., 4, 1279 (2011).
  17. D. C. Lee, H. N. Yang, S. H. Park, and W. J. Kim, "Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell," J. Membr. Sci., 452, 20 (2014). https://doi.org/10.1016/j.memsci.2013.10.018
  18. I. Nicotera, C. Simari, L. Coppola, P. Zygouri, D. Gournis, S. Brutti, and V. Baglio, "Sulfonated graphene oxide platelets in nafion nanocomposite membrane: advantages for application in direct methanol fuel cells.", J. Phys. Chem. C., 42, 24357 (2014).
  19. H.-C. Chien, L.-D. Tsai, C.-P. Huang, C.-Y. Kang, J.-N. Lin, and F.-C. Chang, "Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells," Int. J. Hydrogen. Energ., 38, 13792 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.036
  20. H. Ghassemi, T. Zawodzinski, D. Schiraldi, and S. Hamrock, "Cross-linked low EW PFSA for high temperature fuel cell," pp. 201-220, American Chemical Society, Washungton, DC (2012).
  21. Y. Sone, P. Ekdunge, and D. Simonsson, "Proton conductivity of nafion 117 as measured by a four-electrode AC impedance method", J. Electrochem. Soc., 143, 1254 (1996). https://doi.org/10.1149/1.1836625