DOI QR코드

DOI QR Code

Potential Source of PM10, PM2.5, and OC and EC in Seoul During Spring 2016

2016년 봄철 서울의 PM10, PM2.5 및 OC와 EC 배출원 기여도 추정

  • Ham, Jeeyoung (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Hae Jung (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Cha, Joo Wan (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Ryoo, Sang-Boom (Environmental Meteorology Research Division, National Institute of Meteorological Sciences)
  • 함지영 (국립기상과학원 환경기상연구과) ;
  • 이혜정 (국립기상과학원 환경기상연구과) ;
  • 차주완 (국립기상과학원 환경기상연구과) ;
  • 류상범 (국립기상과학원 환경기상연구과)
  • Received : 2016.10.25
  • Accepted : 2017.01.17
  • Published : 2017.03.31

Abstract

Organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ were measured using Sunset OC/EC Field Analyzer at Seoul Hwangsa Monitoring Center from March to April, 2016. The mean concentrations of OC and EC during the entire period were $4.4{\pm}2.0{\mu}gC\;m^{-3}$ and $1.4{\pm}0.6{\mu}gC\;m^{-3}$, respectively. OC/EC ratio was $3.4{\pm}1.0$. The average concentrations of $PM_{10}$ and $PM_{2.5}$ were $57.4{\pm}25.9$ and $39.7{\pm}19.8{\mu}g\;m^{-3}$, respectively, which were detected by an optical particle counter. The OC and EC peaks were observed in the morning, which were impacted by vehicle emission, however, their diurnal variations were not noticeable. This is determined to be contributed by the long-range transported OC or secondary formation via photochemical reaction by volatile organic compounds at afternoon. A conditional probability function (CPF) model was used to identify the local source of pollution. High concentrations of $PM_{10}$ and $PM_{2.5}$ were observed from the westerly wind, regardless of wind speed. When wind velocity was high, a mixing plume of dust and pollution during long-range transport from China in spring was observed. In contrast, pollution in low wind velocity was from local source, regardless of direction. To know the effect of long-range transport on pollution, a concentration weighted trajectory (CWT) model was analyzed based on a potential source contribution function (PSCF) model in which 75 percentiles high concentration was picked out for CWT analysis. $PM_{10}$, $PM_{2.5}$, OC, and EC were dominantly contributed from China in spring, and EC results were similar in both PSCF and CWT. In conclusion, Seoul air quality in spring was mainly affected by a mixture of local pollution and anthropogenic pollutants originated in China than the Asian dust.

Keywords

References

  1. Anderson, J. O., J. G. Thundiyil, and A. Stolbach, 2012: Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol., 8, 166-175, doi:10.1007/s13181-011-0203-1.
  2. Brankov, E., R. F. Henry, K. L. Civerolo, W. Hao, S. T. Rao, P. K. Misra, R. Bloxam, and N. Reid, 2003: Assessing the effects of transboundary ozone pollution between Ontario, Canada and New York, USA. Environ. Pollut., 123, 403-411, doi:10.1016/S0269-7491(03)00017-4.
  3. Burnett, R. T., and Coauthors, 2014: An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health. Perspect., 122, 397-403, doi:10.1289/ehp.1307049.
  4. Cao, J. J., F. Wu, J. C. Chow, S. C. Lee, Y. Li, S. W. Chen, Z. S. An, K. K. Fung, J. G. Watson, C. S. Zhu, and S. X. Liu, 2005: Characterization and source apportionment of atmospheric organic and elemental carbon during Fall and Winter of 2003 in Xi'an, China. Atmos. Chem. Phys., 5, 3127-3137. https://doi.org/10.5194/acp-5-3127-2005
  5. Cheng, S., L. Yang, X. Zhou, Z. Wang, Y. Zhou, X. Gao, W. Nie, X. Wang, P. Xu, and W. Wang, 2011: Evaluating $PM_{2.5}$ ionic components and source apportionment in Jinan, China 2004 to 2008 using trajectory statistical methods. J. Environ. Monit., 13, 1662-1671, doi:10.1039/C0EM00756K.
  6. Cho, S., H. Kim, Y. Han, and W. Kim, 2016: Characteristics of fine particles measured in two different functional areas and identification of factors enhancing their concentrations. J. Korean Soc. Atmos. Environ., 32, 100-113, doi:10.5572/KOSAE.2016.32.1.100 (in Korean with English abstract).
  7. Choi, J. C., M. Lee, Y. Chun, J. Kim, and S. Oh, 2001: Chemical composition and source signature of spring aerosol in Seoul, Korea. J. Geophy. Res., 106, 18067-18074, doi:10.1029/2001JD900090.
  8. Choi, J. K., J. B. Heo, S. J. Ban, S. M. Yi, and K. D. Zoh, 2012: Chemical characteristics of $PM_{2.5}$ aerosol in Incheon, Korea. Atmos. Environ., 60, 583-592, doi:10.1016/j.atmosenv.2012.06.078.
  9. Choi, N., J. Lee, C. Jung, S. Lee, S. Yi, and Y. Kim, 2015: Concentrations and characteristics of carbonaceous compounds in $PM_{10}$ over Seoul: Measurement between 2006 and 2007. J. Korean Soc. Atmos. Environ., 31, 345-355, doi:10.5572/KOSAE.2015.31.4.345 (in Korean with English abstract).
  10. Chow, J. C., J. G. Watson, P. Doraiswamy, L.-W. A. Chen, D. A. Sodeman, D. H. Lowenthal, K. Park, W. P. Arnott, and N. Motallebi, 2009: Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California. Atmos. Res., 93, 874-887, doi:10.1016/j.atmosres.2009.04.010.
  11. Fujii, Y., W. Iriana, M. Oda, A. Puriwigati, S. Tohno, P. Lestari, A. Mizohata, and H. S. Huboyo, 2014: Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia. Atmos. Environ., 87, 164-169, doi:10.1016/j.atmosenv.2014.01.037.
  12. Gao, N., M. D. Cheng, and P. K. Hopke, 1993: Potential source contribution function analysis and source apportionment of sulfur species measured at Rubidoux, CA during the Southern California Air Quality Study, 1987. Anal. Chim. Acta, 277, 369-380, doi:10.1016/0003-2670(93)80449-U.
  13. Gentner, D. R., and Coauthors, 2012: Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proc. Natl. Acad. Sci. USA, 109, 18318-18323, doi:10.1073/pnas.1212272109.
  14. Ham, J. Y., M. Lee, H. Kim, H. Park, G. Cho, and J. Park, 2016: Variation of OC and EC in $PM_{2.5}$ at Mt. Taehwa. J. Korean Soc. Atmos. Environ., 32, 21-31, doi:10.5572/KOSAE.2016.32.1.021 (in Korean with English abstract).
  15. Harrison, R. M., D. Laxen, S. Moorcroft, and K. Laxen, 2012: Processes affecting concentrations of fine particulate matter in the UK atmosphere. Atmos. Environ., 46, 115-124, doi:10.1016/j.atmosenv.2011.10.028.
  16. Hopke, P. K., N. Gao, and M. D. Cheng, 1993: Combining chemical and meteorological data to infer source areas of airborne pollutants. Chemometr. Intell. Lab., 19, 187-199, doi:10.1016/0169-7439(93)80103-O.
  17. Hopke, P. K., L. A. Barrie, S.-M. Li, M.-D. Cheng, C. Li, and Y. Xie, 1995: Possible sources and preferred pathways for biogenic and non-sea salt sulfur for the high Arctic. J. Geophys. Res., 100, 16595-16603. https://doi.org/10.1029/95JD01712
  18. Hsu, Y., T. M. Holsen, and P. K. Hopke, 2003: Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ., 37, 545-562, doi:10.1016/S1352-2310(02)00886-5.
  19. Jeong, U., J. Kim, H. Lee, J. Jung, Y. Kim, C. Song, and J. Koo, 2011: Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: A PSCF model approach. J. Environ. Monitor., 13, 1905-1918, doi:10.1039/C0EM00659A.
  20. Ji, D., J. Zhang, J. He, X. Wang, B. Pang, Z. Liu, L. Wang, and Y. Wang, 2016: Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmos. Environ., 125, 293-306, doi:10.1016/j.atmosenv.2015.11.020.
  21. Jung, J., S. Kim, B. Choi, K. Kim, J. Huh, S. Yi, and Y. Han, 2009: A Study on the characteristics of carbonaceous compounds in $PM_{2.5}$ measured in Chuncheon and Seoul. J. Korean Soc. Atmos. Environ., 25, 141-153, doi:10.5572/KOSAE.2009.25.2.141 (in Korean with English abstract).
  22. Kang, B. W., C. Kang, H. Lee, and Y. Sunwoo, 2008a: Identification of potential source locations of $PM_{2.5}$ in Seoul using Hybrid-receptor Models. J. Korean Soc. Atmos. Environ., 24, 662-673, doi:10.5572/KOSAE.2008.24.6.662 (in Korean with English abstract).
  23. Kang, C. M., H. S. Lee, B. W. Kang, S. K. Lee, and Y. Sunwoo, 2004: Chemical characteristics of acidic gas pollutants and $PM_{2.5}$ species during hazy episodes in Seoul, South Korea. Atmos. Environ., 38, 4749-4760, doi:10.1016/j.atmosenv.2004.05.007.
  24. Kang, C. M., B. W. Kang, Y. Sunwoo, and H. S. Lee, 2008b: Application of representative $PM_{2.5}$ source profiles for the chemical mass balance study in Seoul. J. Korean Soc. Atmos. Environ., 24, 32-43.
  25. Kim, H., J. Jung, J. Lee, and S. Lee, 2015: Seasonal characteristics of organic carbon and elemental carbon in $PM_{2.5}$ in Daejeon. J. Korean Soc. Atmos. Environ., 31, 28-70, doi:10.5572/KOSAE.2015.31.1.028 (in Korean with English abstract).
  26. Kim, E., and P. K. Hopke, 2004: Source apportionment of fine particles in Washington, DC, utilizing temperatureresolved carbon fractions. J. Air Waste Manage. Assoc., 54, 773-785, doi:10.1080/10473289.2004.10470948.
  27. Kim, Y.-P., 1999: Air quality in Northeast Asia with emphasis on China, Korean. J. Korean Soc. Atmos. Environ., 15, 211-217 (in Korean with English abstract).
  28. KMA, 2016: Monthly report.
  29. Koo, Y. S., D. R. Choi, H. Y. Kwon, Y. K. Jang, and J. S. Han, 2015: Improvement of $PM_{10}$ prediction in East Asia using inverse modeling. Atmos. Envrion., 106, 318-328, doi:10.1016/j.atmosenv.2015.02.004.
  30. Lee, H., C. Kang, B. Kang, and S. Lee, 2005: A study on the $PM_{2.5}$ source characteristics affecting the Seoul area using a Chemical Mass Balance Receptor Model. J. Korean Soc. Atmos. Environ., 21, 329-341 (in Korean with English abstract).
  31. Lee, S., C. H. Ho, Y. G. Lee, H. J. Choi, and C. K. Song, 2013: Influence of transboundary air pollutants from China on the high $PM_{10}$ episode in Seoul, Korea for the period October 16-20, 2008. Atmos. Environ., 77, 430-439, doi:10.1016/j.atmosenv.2013.05.006.
  32. Lee, Y., and Coauthors, 2015: Characteristics of particulate carbon in the Ambient Air in the Korean Peninsula. J. Korean Soc. Atmos. Environ., 31, 330-344, doi:10.5572/KOSAE.2015.31.4.330 (in Korean with English abstract).
  33. Li, K., and I. Hwang, 2015: Characteristics of $PM_{2.5}$ in Gyeongsan using statistical analysis. J. Korean Soc. Atmos. Environ., 31, 520-529, doi:10.5572/KOSAE.2015.31.6.520 (in Korean with English abstract).
  34. Lin, J. J., and H. S. Tai, 2001: Concentrations and distributions of carbonaceous species in ambient particles in kaohsiung city, Taiwan. Atmos. Environ., 35, 2627-2636, doi:10.1016/S1352-2310(00)00444-1.
  35. Liu, D., J. Abuduwaili, J. Lei, G. Wu, and D. Gui, 2011: Wind erosion of saline playa sediments and its ecological effects in Ebinur Lake, Xinjiang, China. Environ. Earth Sci., 63, 241-250, doi:10.1007/s12665-010-0690-4.
  36. Lucey, D., L. Hadjiiski, P. K. Hopke, J. R. Scudlark, and T. Church, 2001: Identification of sources of pollutants in precipitation measured at the Mid-Atlantic US coast using Potential Source Contribution Function (PSCF). Atmos. Environ., 35, 3979-3986, doi:10.1016/S1352-2310(01)00185-6.
  37. NIOSH, A., 1996: Elemental carbon (Diesel Exhaust). Method 5040 issue 1, NIOSH Manual of Analytical Methods, fourth Ed., National Institute of Occupational Safety and Health, 9 pp.
  38. Park, S. S., D. Harrison, J. P. Pancras, and J. M. Ondov, 2005: Highly time-resolved organic and elemental carbon measurements at the Baltimore Supersite in 2002. J. Geophys. Res., 110, D07S06, doi:10.1029/2004JD004610.
  39. Park, S. S., S. A. Jung, B. J. Gong, S. Y. Cho, and S. J. Lee, 2013a: Characteristics of $PM_{2.5}$ haze episodes revealed by highly time-resolved measurements at an air pollution monitoring Supersite in Korea. Aerosol Air Qual. Res., 13, 957-976, doi:10.4209/aaqr.2012.07.0184.
  40. Park, S. U., and E. H. Lee, 2004: Parameterization of Asian Dust (Hwangsa) particle-size distributions for use in dust emission models. Atmos. Environ., 38, 2155-2162, doi:10.1016/j.atmosenv.2004.01.024.
  41. Park, S. U., J. H. Cho, and M. S. Park, 2013b: Analyses of high aerosol concentration events (dense haze/mist) occurred in East Asia during 10-16 January 2013 using the data simulated by the Aerosol Modeling System. Int. J. Chem., 2, 10-26.
  42. Poirot, R. L., P. R. Wishinski, P. K. Hopke, and A. V. Polissar, 2001: Comparative application of multiple receptor methods to identify aerosol sources in Northern Vermont. Environ. Sci. Technol., 35, 4622-4636, doi:10.1021/es010588p.
  43. Polissar, A. V., P. K. Hopke, and J. M. Harris, 2001: Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ. Sci. Technol., 35, 4214-4226, doi:10.1021/es0107529.
  44. Rattigan, O., H. Felton, M. Bae, J. Schwab, and K. Demerjian, 2010: Multi-year hourly $PM_{2.5}$ carbon measurements in New York: Diurnal, day of week and seasonal patterns. Atmos. Environ., 44, 2043-2053, doi:10.1016/j.atmosenv.2010.01.019.
  45. Saarikoski, S., H. Timonen, K. Saarnio, M. Aurela, L. Jarvi, P. Keronen, V. M. Kerminen, and R. Hillamo, 2008: Sources of organic carbon in fine particulate matter in northern European urban air. Atmos. Chem. Phys., 8, 6281-6295. https://doi.org/10.5194/acp-8-6281-2008
  46. Safai, P., M. Raju, P. S. P. Rao, and G. Pandithurai, 2014: Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. Atmos. Environ., 92, 493-500, doi:10.1016/j.atmosenv.2014.04.055.
  47. Sandrini, S., and Coauthors, 2014: Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmos. Environ., 99, 587-598, doi:10.1016/j.atmosenv.2014.10.032.
  48. Seinfeld, J. H., and S. N. Pandis, 2012: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, 628-690.
  49. Shin, S. A., J. S. Han, Y. D. Hong, J. Y. Ahn, K. J. Moon, S. J. Lee, and S. D. Kim, 2005: Chemical composition and features of Asian dust observed in Korea (2000-2002). J. Korean Soc. Atmos. Environ., 21, 119-129 (in Korean with English abstract).
  50. Shon, Z. H., K. H. Kim, S. K. Song, K. Jung, N. J. Kim, and J. B. Lee, 2012: Relationship between water-soluble ions in $PM_{2.5}$ and their precursor gases in Seoul megacity. Atmos. Environ., 59, 540-550, doi:10.1016/j.atmosenv.2012.04.033.
  51. Son, S., M. Bae, and S. Park, 2015: Chemical characteristics and formation pathways of Humic Like Substances (HULIS) in $PM_{2.5}$ in an Urban Area. J. Korean Soc. Atmos. Environ., 31, 239-254, doi:10.5572/KOSAE.2015.31.3.239 (in Korean with English abstract).
  52. Szidat, S., M. Ruff, N. Perron, L. Wacker, H. A. Synal, M. Hallquist, A. S. Shannigrahi, K. E. Yttri, C. Dye, and D. Simpson, 2009: Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg, Sweden. Atmos. Chem. Phys., 9, 1521-1535, doi:10.5194/acp-9-1521-2009.
  53. Turpin, B. J., and J. J. Huntzicker, 1991: Secondary formation of organic aerosol in the Los Angeles Basin: A descriptive analysis of organic and elemental carbon concentrations. Atmos. Environ., 25, 207-215. https://doi.org/10.1016/0960-1686(91)90291-E
  54. Turpin, B. J., and J. J. Huntzicker, 1995: Identification of secondary aerosol episodes and secondary organic aerosol concentrations during SCAQS. Atmos. Environ., 29, 3527-3544. https://doi.org/10.1016/1352-2310(94)00276-Q
  55. Wang, X., D. L. Mauzerall, Y. Hu, A. G. Russell, E. D. Larson, J. H. Woo, D. G. Streets, and A. Guenther, 2005: A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020. Atmos. Environ., 39, 5917-5933, doi:10.1016/j.atmosenv.2005.06.051.
  56. Watson, J. G., L. W. A. Chen, J. C. Chow, P. Doraiswamy, and D. H. Lowenthal, 2008: Source apportionment: Findings from the US supersites program. J. Air Waste Manage. Assoc., 58, 265-288, doi:10.3155/1047-3289.58.2.265.
  57. WHO, 2014: Burden of Disease from Ambient Air Pollution for 2012, 3 pp [Available online at http://www.who.int/phe/health_topics/outdoorair/databases/AAP_BoD_results_March2014.pdf].
  58. Xiao, S., and Coauthors, 2014: Long-term trends in visibility and impacts of aerosol composition on visibility impairment in Baoji, China. Atmos. Res., 149, 88-95, doi:10.1016/j.atmosres.2014.06.006.
  59. Yang, F., K. He, B. Ye, X. Chen, L. Cha, S. H. Cadle, T. Chan, and P. A. Mulawa, 2005: One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. Atmos. Chem. Phys., 5, 1449-1457, doi:10.5194/acp-5-1449-2005.
  60. Yu, G., S. Cho, M. Bae, K. Lee, and S. Park, 2015: Investigation of $PM_{2.5}$ Pollution Episodes in Gwangju. J. Korean Soc. Atmos. Environ., 31, 269-286, doi:10.5572/KOSAE.2015.31.3.269 (in Korean with English abstract).

Cited by

  1. Research on Organic Carbon and Elemental Carbon Distribution Characteristics and Their Influence on Fine Particulate Matter (PM2.5) in Changchun City vol.6, pp.2, 2019, https://doi.org/10.3390/environments6020021