DOI QR코드

DOI QR Code

Korean Teachers' Conceptions of Models and Modeling in Science and Science Teaching

과학 탐구와 과학 교수학습에서의 모델과 모델링에 대한 교사들의 인식

  • Received : 2017.01.04
  • Accepted : 2017.01.20
  • Published : 2017.02.28

Abstract

Science inquiry has long been emphasized in Korean science education. Scientific modeling is one of key practices in science inquiry with a potential to provide students with opportunities to develop their own explanations and knowledge thereafter. The purpose of this study is to investigate teacher's understanding of models in science and science teaching. A professional development program on Models (PDM) was developed and refined through three times of implementation while teachers' conceptions of models and modeling were examined. A total of 29 elementary and secondary teachers participated in this study. A survey based on model use of scientists in the history of science was developed and used to collect data and audio recordings of discussions among teachers and artifacts produced by the teachers during PDM were also collected. Three ways of ontological and two ways of epistemological understanding of models and modeling were found in teachers' ideas. After PDM, a quarter of the teachers changed their ontological understanding whereas very few changed their epistemological understanding. In contrast, more than two thirds of the teachers deepened and extended their ideas about using models and modeling in teaching. There were no clear relationships between teachers' understanding of models and ways and ideas about using models in science teaching. However, teachers' perceptions of school conditions were found to mediate their intention to use models in science teaching. The findings indicate possible approaches to professional development program content design and further research.

과학탐구는 교육과정에서 오랜 동안 강조되어왔다. 2015 개정 과학과 교육과정에서 강조되는 기능 중 하나는 모델의 사용이며, 모델 기반 탐구 활동은 학생들이 스스로 자연 현상에 대한 설명을 구성할 수 있는 기회를 제공한다. 본 연구는 모델 및 모델링에 대한 교사 연수를 실시하면서 교사의 모델과 모델링에 대한 인식을 조사하고, 앞으로의 과학 교사 교육에 대한 시사점을 얻고자 하였다. 연구 대상은 연수에 참가한 29명의 초, 중등 교사였고, 연구 자료로는 각 연수 설계 및 실행 과정 중 연구자의 기록, 연구 참여 교사들이 작성한 모델 및 모델링에 대한 질문지의 응답, 연수 과정에서 수행한 과제의 결과물, 연수 중 교사 토론의 녹음을 수집하였다. 연구 결과 과학자의 모델 및 모델링에 대한 교사들의 인식은 존재론적 측면에서는 세 가지 관점으로 인식론적 측면에서는 두 가지 관점으로 구분할 수 있었다. 교사의 인식론적 이해는 연수 후에 크게 변화가 없었으나 존재론적 이해에 있어서는 보다 폭넓고 깊은 이해를 가지는 방향으로 변화하는 사례가 일부 있었다. 그러나 평균적으로 연수 전과 후 모두 연구에 참여한 대부분의 교사들은 모델을 개념 가시화의 도구로서 인식하는 관점을 갖는 것으로 드러났고, 모델의 사용이 과학탐구 과정에서 핵심적인 역할을 하는가에 대한 의견은 반반으로 나뉘었다. 한편, 과학 수업에서 모델 사용과 모델링 적용에 대한 교사의 이해는 연수를 통해 62%의 교사가 보다 세련된 수업 적용 계획을 세우고 이를 위해 보다 확장된 모델 및 모델링 개념을 가지게 되었음을 확인하였다. 교사의 모델에 대한 인식과 수업 실천사이의 관련은 명료하게 드러나지 않았으나 학교 상황 요인이 교사의 실천의지에 대한 매개로 작용하는 것이 드러났으며, 교사가 모델과 모델링에 대해 보다 확장적인 개념을 가지면 수업에서의 활용 가능성을 더 고려한다는 것이 드러났다. 연구 결과에 기초하여 추후 연구 및 유사한 연수에 대한 내용 및 전략을 제안하였다.

Keywords

References

  1. Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domain. Science & Education, 22, 2087- 2107. doi:10.1007/s11191-012-9520-2
  2. Appleton, K. (1997). Analysis and description of students' learning during science classes using a constructivist-based model. Journal of Research in Science Teaching, 34(3), 303-318. http://doi.org/10.1002/(SICI)1098-2736(199703)34:3<303::AID-TEA6 >3.0.CO;2-W
  3. Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research. Educational Researcher, 41(1), 16-25. http://doi.org/10.3102/0013189X11428813
  4. Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3-15. http://doi.org/10.3102/0013189X033008003
  5. Brandwein, P. F., & Schwab, J. J. (1962). The teaching of science: The Teaching of Science as Enquiry and Science in the Elementary School. Cambridge, MA: Harvard University Press.
  6. Clement, J. (1989). Learning via Model construction and criticism: Protocol evidence on sources of creativity in ccience. In Handbook of Creativity (pp. 341-381). Boston, MA: Springer US. http://doi.org/10.1007/978-1-4757-5356-1_20
  7. Duschl, R. A., & Grandy, R. E. (Eds.). (2008). Teaching Scientific Inquiry: Recommendations for Research and Implementation. Rotterdam, The Netherlands: Sense.
  8. Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79. http://doi.org/10.1002/tea.3660280107
  9. Gray, R., & Kang, N.-H. (2014). The structure of scientific arguments by secondary science teachers: Comparison of experimental and historical science topics. International Journal of Science Education, 36(1), 46- 65. http://doi.org/10.1080/09500693.2012.715779
  10. Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822. http://doi.org/10.1002/tea.3660280907
  11. Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026. doi:10.1080/095006900416884
  12. Hodson, D. (1996). Laboratory work as scientific method: three decades of confusion and distortion. Journal of Curriculum Studies, 28(2), 115-135. http://doi.org/10.1080/0022027980280201
  13. Jeong, J.-H., & Kang, N.-H. (2016). Comparison of Korean and US Achievement Expectations for Physics in School Education. New Physics: Sae Mulli, 66(6), 705-718. https://doi.org/10.3938/NPSM.66.705
  14. Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. doi:10.1080/09500690110110142
  15. Justi, R., & Gilbert, J. (2003). Teachers' views on the nature of models. International Journal of Science Education, 25(11), 1369-1386. http://doi.org/10.1080/0950069032000070324
  16. Kang, N.-H., & Lee, E. M. (2013). An analysis of inquiry activities in high school physics textbooks for the 2009 revised science curriculum. Journal of the Korean Association for Science Education, 33(1), 132-143. https://doi.org/10.14697/jkase.2013.33.1.132
  17. Kang, N.-H., Orgill, M., & Crippen, K. J. (2008). Understanding teachers' conceptions of classroom inquiry with a teaching scenario survey instrument. Journal of Science Teacher Education, 19(4), 337-354. http://doi.org/10.1007/s10972-008-9097-4
  18. Kang, N. -H., & Wallace, C. S. (2005). Secondary science teachers' use of laboratory activities: Linking epistemological beliefs, goals, and practices. Science Education, 89, 140-165. http://doi.org/10.1002/sce.20013$\mid$ISSN 0036-8326
  19. Kim, Y., Paik, S.-H., Choi, S. Y., Kang, N.-H., Maeng, S., & Joung, Y. J. (2015). Analysis on the trends of science education studies related to students' science learning in Korea. Journal of the Korean Association for Science Education, 35(4), 751-772. http://doi.org/10.14697/jkase.2015.35.4.0751
  20. Knorr-Cetina, K. (1991). Epistemic cultures: Forms of reason in science. History of Political Economy, 23(1), 105-122. doi:10.1215/00182702-23-1-105
  21. Kuhn, T. S. (1970). The Structure of Scientific Revolutions (2nd ed.). Chicago: The University of Chicago Press.
  22. Latour, B. (1987). Science in action. Cambridge, MA: Harvard University Press.
  23. Lehrer, R., & Schauble, L. (2000). Developing Model-Based Reasoning in Mathematics and Science. Journal of Applied Developmental Psychology, 21(1), 39-48. http://doi.org/10.1016/S0193-3973(99)00049-0
  24. Louca, L. T. & Zacharia, Z. C. (2012). Modeling-based learning in science education: Cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64, 471-492. https://doi.org/10.1080/00131911.2011.628748
  25. Mathison, S. (1988). Why triangulate? Educational Researcher, 17(2), 13-17. https://doi.org/10.3102/0013189X017002013
  26. Mills, G. E. (2007). Action Research: A Guide for the Teacher Researcher (3rd ed.). Upper Saddle River, NJ: Pearson.
  27. Mody, C. M. (2015). Scientific practice and science education. Science Education, 99(6), 1026-1032. doi:10.1002/sce.21190
  28. Nagel, E. (1960). The Structure of Science: Problems in the Logic of Scientific Explanation. Indianapolis, USA: Hackett.
  29. National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, D.C.: National Academies Press. doi:10.17226/13165
  30. Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive Models of Science (pp. 3-44). Minneapolis, MN: University of Minesota Press.
  31. NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies.
  32. Oh, P. S. (2016). Roles of models in abductive reasoning: A schematization through theoretical and empirical studies. Journal of The Korean Association For Science Education, 36(4), 551-561. http://doi.org/10.14697/jkase.2016.36.4.0551
  33. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. doi:10.1080/09500693.2010.502191
  34. Park, J. (2016). Discussions about the three aspects of scientific literacy: Focus on integrative understanding, settlement in curriculum, and civic education. Journal of the Korean Association For Science Education, 36(3), 413-422. http://doi.org/10.14697/jkase.2016.36.3.0413
  35. Park, H.-K., Choi, J.-R., Kim, C.-J., Kim, H.-B., Yoo, J., Jang, S., & Choe, S.-U. (2016). The change in modeling ability of science-gifted students through the co-construction of scientific Model. Journal of the Korean Association for Science Education, 36(1), 15-28. http://doi.org/10.14697/jkase.2016.36.1.0015
  36. Pickering, A. (Ed.). (1992). Science as Practice and Culture. Chicago.
  37. Sandoval, W. A., & Bell, P. (2004). Design-based research methods for studying learning in context: Introduction. Educational Psychologist, 39(4), 199-201. http://doi.org/10.1207/s15326985ep3904_1
  38. Schwartz, C. V. & White, B. Y. (2005). Meta-modeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23, 165-205. https://doi.org/10.1207/s1532690xci2302_1
  39. Stroupe, D. (2015). Describing "Science Practice" in learning settings. Science Education, 99(6), 1033-1040. doi:10.1002/sce.21191
  40. Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368. http://doi.org/10.1080/09500690110066485
  41. Van Driel, J. H., & Verloop, N. (2003). Experienced teachers' knowledge of teaching and learning of models and modelling in science education. International Journal of Science Education, 24(12), 1255-1272. https://doi.org/10.1080/09500690210126711
  42. Windschitl, M., & Thompson, J. (2006). Transcending simple forms of school science investigation: The impact of preservice instruction on teachers' understandings of model-based inquiry. American Educational Research Journal, 43(4), 783-835. http://doi.org/10.3102/00028312043004783
  43. Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. doi:10.1002/sce.20259

Cited by

  1. Investigation of Preservice Elementary Teachers' Perception on Science Inquiry Regarding Science Practices vol.21, pp.6, 2017, https://doi.org/10.24231/rici.2017.21.6.644
  2. 2015 개정 교육과정에 따른 과학탐구실험 교과서에 나타난 참탐구 요소 분석 vol.63, pp.3, 2017, https://doi.org/10.5012/jkcs.2019.63.3.183
  3. 2009·2015 개정 교육과정 화학 I 및 화학 II 교과서 및 교사용 지도서에 제시된 산·염기 모델 내용에 대한 '이그노런스' 분석 vol.64, pp.3, 2017, https://doi.org/10.5012/jkcs.2020.64.3.175
  4. 인식론 및 존재론적 관점에서 두 유형의 산·염기 모델에 대한 화학 교사들의 인지 수준 분석 vol.64, pp.5, 2017, https://doi.org/10.5012/jkcs.2020.64.5.267
  5. 과학 모델링 수업에서 나타난 초등 교사의 수업 실행 변화 -모델링 PCK를 중심으로- vol.40, pp.5, 2020, https://doi.org/10.14697/jkase.2020.40.5.543
  6. 교사학습공동체 교사들의 과학 실천 기반 수업을 위한 PCK 구성 vol.40, pp.5, 2017, https://doi.org/10.14697/jkase.2020.40.5.565
  7. 고등학교 과학영재 학생들의 산-염기 모델의 인지 수준 분석 vol.65, pp.1, 2021, https://doi.org/10.5012/jkcs.2021.65.1.37