DOI QR코드

DOI QR Code

Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon

활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열

  • Lee, Jong Jib (Division of chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2016.12.30
  • Accepted : 2017.02.07
  • Published : 2017.04.10

Abstract

The adsorption of crystal violet dyes from aqueous solution using the granular activated carbon was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The adsorption characteristic of crystal violet followed Langmuir isotherm. Based on the estimated Langmuir separation factor ($R_L=0.02{\sim}0.106$), this process could be employed as an effective treatment (0 < $R_L$ < 1). The adsorption kinetics followed the pseudo second order model. The values of Gibbs free energy (-1.61~-11.66 kJ/mol) and positive enthalpy (147.209 kJ/mol) indicated that the adsorption process is a spontaneous and endothermic reaction. The isosteric heat of adsorption decreased with increasing of surface loading by the limited adsorbent-adsorbate interaction due to increased surface coverage.

활성탄을 사용하여 수용액으로부터 crystal violet 염료의 흡착에 대해 조사하였으며, 흡착제의 양, 초기농도와 접촉시간 및 온도를 흡착변수로 사용하여 수행하였다. 흡착평형관계는 Langmuir 등온식에 잘 맞았다. 평가된 Langmuir 분리 계수($R_L=0.02{\sim}0.106$)를 바탕으로 이 흡착공정이 효과적인 처리(0 < $R_L$ < 1)가 가능하다는 것을 알았다. 흡착동력학 데이터는 유사 2차 반응속도식에 잘 맞는 것으로 나타났다. Gibbs 자유에너지(-1.61~-11.66 kJ/mol)와 엔탈피(147.209 kJ/mol)는 흡착공정이 자발적이고 흡열반응으로 진행된다는 것을 나타냈다. 등량흡착열은 표면덮임이 증가됨에 따라 흡착제-흡착질의 상호작용이 제한되어 표면부하량이 증가할수록 작아졌다.

Keywords

References

  1. W. S. Perkins, Renovation of dyebath water by chlorination and ozonation, Part 3, Text. Chem. Color., 12, 262-272 (1980).
  2. O. J. Hao, H. Kim, and P. C. Chiang, Decolorization of wastewater, Crit. Rev. Environ. Sci. Technol., 30, 449-505 (2000). https://doi.org/10.1080/10643380091184237
  3. P. K. Malik and S. K. Saha, Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst, Sep. Purif. Technol., 31, 241-250 (2003). https://doi.org/10.1016/S1383-5866(02)00200-9
  4. C. M. Carliell, S. J. Barclay, and C. A. Buckley, Treatment of exhausted reactive dye bath effluent using anaerobic digestion: Laboratory and full scale trials, Wat. Res., 22, 225-233 (1996).
  5. K. Mohanty, J. T. Naidu, B. C. Meikap, and M. N. Biswas, Removal of crystal violet from wastewater by activated carbons prepared from rice husk, Ind. Eng. Chem. Res., 45, 5165-5171 (2006). https://doi.org/10.1021/ie060257r
  6. C. A. Basar, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. Hazard. Mater., B135, 232-241 (2006).
  7. A. Saeed, M. Sharif, and M. Iqba, Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption, J. Hazard. Mater., 179, 564-572 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.041
  8. B. C. S. Ferreira, F. S. Teodoro, A. B. Mageste, L. F. Gil, R. P. d. Freitas, and L. V. A. Gurgel, Application of a new carboxylate-functionalized sugarcane bagasse for adsorptive removal of crystal violet from aqueous solution: Kinetic, equilibrium and thermodynamic studies, Ind. Crops Prod., 65, 521-534 (2015). https://doi.org/10.1016/j.indcrop.2014.10.020
  9. F. A. Pavan, E. S. Camacho, E. C. Lima, G. L. Dotto, V. T. A. Branco, and S. L. P. Dias, Formosa papaya seed powder (FPSP): Preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase, J. Environ. Chem. Eng., 2, 230-238 (2014). https://doi.org/10.1016/j.jece.2013.12.017
  10. N. P. Krishnan, M. Ilayaraja, R. Karthik, and R. S. Kannan, Spectroscopic analysis of crystal violet dye removal by sida rhombifolia: Kinetic, equilibrium, thermodynamic studies, World J. Pharm. Pharm. Sci., 3, 713-732 (2014).
  11. Wikipedia, en.wikipedia.org, "crystal violet", http://en.wikipedia.org/wiki/Crystal_violet.
  12. J. J. Lee, Equilibrium, kinetics and thermodynamics studies about adsorption of safranin by granular activated carbon, Appl. Chem. Eng., 26, 581-586 (2015). https://doi.org/10.14478/ace.2015.1081
  13. K. Porkodi and K. Vasanth Kumar, Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems, J. Hazard. Mater., 143, 311-27 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.029
  14. J. J. Lee, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of rhodamine B onto granular activated carbon, Appl. Chem. Eng., 27, 199-204 (2016). https://doi.org/10.14478/ace.2016.1015
  15. J. J. Lee, Equilibrium, kinetic and thermodynamic parameter studies on adsorption of acid black 1 using coconut shell-based granular activated carbon, Appl. Chem. Eng., 27, 590-598 (2016). https://doi.org/10.14478/ace.2016.1085
  16. S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019
  17. A. M. M. Vargas, A. L. Cazetta, A. C. Martins, J. C. G. Moraes, E. E. Garcia, G. F. Gauze, W. F. Costa, and V. C. Almeida, Kinetic and equilibrium studies: Adsorption of food dyes Acid Yellow 6, Acid Yellow 23, and Acid Red 18 on activated carbon from flamboyant pods, Chem. Eng. J., 181-182, 243-250 (2012). https://doi.org/10.1016/j.cej.2011.11.073
  18. V. Srihari and A. Das, The kinetic and thermodynamic studies of phenol-sorption on to three agro-based carbons, Desalination, 225, 220-234 (2008). https://doi.org/10.1016/j.desal.2007.07.008
  19. W. S. W. Ngah and M. A. K. M. Hanafiah, Adsorption of copper on rubber (hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies, Biochem. Eng. J., 39, 521-530 (2008). https://doi.org/10.1016/j.bej.2007.11.006
  20. M. Dorgan, M. Alkan, O. Demirbas, Y. Ozdemir, and C. Ozmetin, Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions, Chem. Eng. J., 124, 89-101 (2006). https://doi.org/10.1016/j.cej.2006.08.016
  21. M. T. Sulak, E. Demirbas, and M. Kobya, Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran, Bioresour. Technol., 98, 2590-2598 (2007). https://doi.org/10.1016/j.biortech.2006.09.010
  22. S. Chowdhury, R. Mishra, P. Saha, and P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination, 265, 159-168 (2011). https://doi.org/10.1016/j.desal.2010.07.047
  23. M. Dorgan and M. Alkan, Removal of methyl violet from aqueous solution by perlite., J. Colloid Interface Sci., 267, 32-41 (2003). https://doi.org/10.1016/S0021-9797(03)00579-4

Cited by

  1. 입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터 vol.27, pp.1, 2017, https://doi.org/10.7464/ksct.2021.27.1.47