DOI QR코드

DOI QR Code

Research Trends and Prospects of Reverse Electrodialysis Membranes

역전기투석용 이온교환막의 연구동향 및 전망

  • Hwang, Jin Pyo (Energy Engineering Department, Dankook University) ;
  • Lee, Chang Hyun (Energy Engineering Department, Dankook University) ;
  • Jeong, Yeon Tae (Future Technology Research Laboratory, Korea Electric Power Research Institute)
  • 황진표 (단국대학교 융합기술대학 에너지공학과) ;
  • 이창현 (단국대학교 융합기술대학 에너지공학과) ;
  • 정연태 (한전전력연구원 창의미래연구소)
  • Received : 2017.04.25
  • Accepted : 2017.04.26
  • Published : 2017.04.30

Abstract

The reverse electrodialysis (RED) is an energy generation system to convert chemical potential of saline water directly into electric energy via the combination of current derived from a redox couple electrolyte and ionic potential obtained when cation ($Na^+$) and anion ($Cl^-$) pass through cation exchange membrane (CEM) and anion exchange membrane (AEM) into fresh water, respectively. Ion exchange membrane, a key element of RED system, should satisfy requirements such as 1) low swelling behavior, 2) a certain level of ion exchange capacity, 3) high ion conductivity, and 4) high perm-selectivity to achieve high power density. In this paper, research trends and prospects of ionomer materials and ion exchange membranes are dealt with.

양이온($Na^+$) 및 음이온($Cl^-$)이 각각의 CEM과 AEM을 통해 선택적으로 분리되어 담수로 이동할 때 발생되는 전위차와 산화/환원(redox couple)형 전해질을 포함하고 있는 전극에서 발생하는 전류를 이용하여 전기 에너지로 전환시키는 에너지변환장치이다. RED 시스템의 핵심소재 중 하나인 이온교환막은 높은 출력 밀도를 달성하기 위해 1) 낮은 팽윤거동, 2) 적절한 이온교환능, 3) 높은 이온전도도, 4) 높은 이온선택성을 만족시켜야 한다. 본 논문에서는 이를 만족시키는 소재 및 이온교환막의 연구동향 및 전망에 대해 설명하였다.

Keywords

References

  1. H. Strathmann, "Ion-exchange membrane separation processes", Elsevier, Amsterdam (2004).
  2. P. Dlugolecki, K. Nymeijer, S. Metz, and M. Wessling, "Current status of ion exchange membranes for power generation from salinity gradients", J. Membr. Sci., 319, 214 (2008). https://doi.org/10.1016/j.memsci.2008.03.037
  3. G. L. Wick, "Power from salinity gradients", Energy, 3, 95 (1978). https://doi.org/10.1016/0360-5442(78)90059-2
  4. J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136 (2009). https://doi.org/10.1016/j.memsci.2008.11.015
  5. R. E. Pattle, "Production of electric power by mixing fresh and salt water in the hydroelectric pile," Nature, 174, 660 (1954). https://doi.org/10.1038/174660a0
  6. G. L. Wick and W. R. Schmitt, "Prospects for renewable energy from sea," Mar. Technol. Soc. J., 11, 16 (1977).
  7. J. W. Post, H. V. Hamelers, and C. J. N. Buisman, "Energy recovery from controlled mixing salt and fresh water with a reverse electro-dialysis system," Environ. Sci. Technol., 42, 5785 (2008). https://doi.org/10.1021/es8004317
  8. J. H. Kim, S. H. Kim, and J. H. Kim, "Pressure retarded osmosis process: Current status and future," J. Kor. Soc. Environ. Eng., 36, 791 (2014). https://doi.org/10.4491/KSEE.2014.36.11.791
  9. K. L. Lee, R. W. Baker, and H. K. Lonsdale, "Membranes for power generation by pressure-retarded osmosis," J. Membr. Sci., 8, 141 (1981). https://doi.org/10.1016/S0376-7388(00)82088-8
  10. E. Brauns, "Towards a worldwide sustainable and simultaneous large scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power", Desalination, 219, 312 (2008). https://doi.org/10.1016/j.desal.2007.04.056
  11. E. Brauns, "Salinity gradient power by reverse electrodialysis: Effect of model parameters on electrical power output", Desalination, 237, 378 (2009). https://doi.org/10.1016/j.desal.2008.10.003
  12. J. N. Weinstein and F. B. Leitz, "Electric power from differences in salinity: The dialytic battery", Science, 191, 557 (1976). https://doi.org/10.1126/science.191.4227.557
  13. F. Suda, T. Matsuo, and D. Ushioda, "Transient changes in the power output from the concentration difference cell (dialytic battery) between seawater and river water", Energy, 32, 165 (2007). https://doi.org/10.1016/j.energy.2006.04.005
  14. J. Jagur-Grodzinski and R. Kramer, "Novel process for direct conversion of free energy of mixing into electric power", Ind. Eng. Chem. Process Des. Dev., 25, 443 (1986). https://doi.org/10.1021/i200033a016
  15. G. Lagger, H. Jensen, J. Josserand, and H. H. Girault, "Hydro-voltaic cells: Part 1. concentration cells", J. Electroanal. Chem., 545, 1 (2003). https://doi.org/10.1016/S0022-0728(03)00116-5
  16. J. W. Post, J. Veerman, H. V. M. Hamelers, G. J. W Euverink, S. J. Metz, K. Nymeijer, and C. J. N. Buisman, "Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis", J. Membr. Sci., 288, 218 (2007). https://doi.org/10.1016/j.memsci.2006.11.018
  17. M. Turek and B. Bandura, "Renewable energy by reverse electrodialysis", Desalination, 205, 67 (2007). https://doi.org/10.1016/j.desal.2006.04.041
  18. X. Tongwen and Y. Weihua, "Fundamental studies of a new series of anion exchange membranes: membrane preparation and characterization", J. Membr. Sci., 190, 159 (2001). https://doi.org/10.1016/S0376-7388(01)00434-3
  19. P. Dlugolecki, P. Ogonowski, S. J. Metz, M. Saakes, K. Nijmeijer, and M. Wessling, "On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport", J. Membr. Sci., 349, 369 (2010). https://doi.org/10.1016/j.memsci.2009.11.069
  20. P. Xing, G. P. Robertson, M. D. Guiver, S. D Mikhailenko, K. Wang, and S. Kaliaguine, "Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes", J. Membr. Sci., 229, 95 (2004). https://doi.org/10.1016/j.memsci.2003.09.019
  21. D. W. Shin, H. K. Kim, T. H. Kim, J. S. Park, and D. H. Jeon, "Numerical analysis for the effect of spacer in reverse electrodialysis", Clean Technol., 19, 1 (2013). https://doi.org/10.7464/ksct.2013.19.1.001
  22. R. E. Lacey, "Energy by reverse electrodialysis", Ocean Eng., 7, 1 (1980). https://doi.org/10.1016/0029-8018(80)90030-X
  23. B. E. Logan and M. Elimelech, "Membrane-based processes for sustainable power generation using water", Nature, 488, 313 (2012). https://doi.org/10.1038/nature11477
  24. M. Elimelech and W. A. Phillip, "The future of sea water desalination: energy, technology, and the environment", Science, 333, 712 (2011). https://doi.org/10.1126/science.1200488
  25. J. C. Na, H. K. Kim, C. S. Kim, and M. H. Han, "Effect of seawater/Fresh water flow rates on power density of reverse electrodialysis", J. Kor. Soc. Environ. Eng., 36, 624 (2014). https://doi.org/10.4491/KSEE.2014.36.9.624
  26. R. K. Nagarale, G. S. Gohil, and V. K. Shahi, "Recent developments on ion-exchange membranes and electro-membrane processes", Adv. Colloid Interface Sci., 119, 97 (2006). https://doi.org/10.1016/j.cis.2005.09.005
  27. N. P. Brandon, S. Skinner, and B. C. H. Steele, "Recent advances in materials for fuel cells", Annu. Rev. Mater. Res., 33, 183 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.094122
  28. T. Sata, Ion Exchange Membranes: Preparation, Characterization, Modification and Application, The Royal Society of Chemistry, Cambridge, (2004).
  29. J. Veerman, R. M. de Jong, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density", J. Membr. Sci., 343, 7 (2009). https://doi.org/10.1016/j.memsci.2009.05.047
  30. H. Strathmann, "Ion exchange membrane separation processes, in: Membrane Science and Technology Series", pp. 348, Science Direct, Amsterdam, Boston (2004).
  31. E. Guler, Y. L. Zhang, M. Saakes, and K. Nijmeijer, "Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis", Chemsuschem, 5, 2262 (2012). https://doi.org/10.1002/cssc.201200298
  32. F. Helfer, C. Lemckert, and Y. G. Anissimov, "Osmotic power with pressure retarded osmosis: theory, performance and trends - a review", J. Membr. Sci., 453, 337 (2014). https://doi.org/10.1016/j.memsci.2013.10.053
  33. S. Koter, P. Piotrowski, and J. Kerres, "Comparative investigations of ion-exchange membranes", J. Membr. Sci., 153, 83 (1999). https://doi.org/10.1016/S0376-7388(98)00242-7
  34. H. Strathmann, A. Grabowski, and G. Eigenberger, "Ion-exchange membranes in the chemical process industry", Ind. Eng. Chem. Res., 52, 10364 (2013). https://doi.org/10.1021/ie4002102
  35. G. M. Geise, M. A. Hickner, and B. E. Logan, "Ionic resistance and permselectivity tradeoffs in anion exchange membranes", ACS Appl. Mater. Interfaces, 5, 10294 (2013). https://doi.org/10.1021/am403207w
  36. S. Nouri, L. Dammak, G. Bulvestre, and B. Auclair, "Comparison of three methods for the determination of the electrical conductivity of ion-exchange polymers", Eur. Polymer. J., 38, 1907 (2002). https://doi.org/10.1016/S0014-3057(02)00057-5
  37. T. J. Cho, "Prospect of Water Treatment Technology by Ion Exchange Membrane", KONETIC (2014).
  38. D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Doubled power density from salinity gradients at reduced intermembrane distance", Environ. Sci. Technol., 45, 7089 (2011). https://doi.org/10.1021/es2012758
  39. F. Suda, T. Matsuo, and D. Ushioda, "Transient changes in the power output from the concentration difference cell (dialytic battery) between sea water and river water", Energy, 32, 165 (2007). https://doi.org/10.1016/j.energy.2006.04.005
  40. E. Brauns, "Salinity gradient power by reverse electrodialysis: Effect of model parameters on electrical power output", Desalination 237, 378 (2009). https://doi.org/10.1016/j.desal.2008.10.003
  41. E. Brauns, "Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power?", Desalination, 219, 312 (2008). https://doi.org/10.1016/j.desal.2007.04.056
  42. D. A. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, "Influence of multivalent ions on renewable energy generation in reverse electrodialysis", Energy Environ. Sci., 7, 1434 (2014). https://doi.org/10.1039/C3EE43501F
  43. M. Zhang, H. K. Kim, E. Chalkova, F. Mark, S. N. Lvov, and T. M. Chung, "New polyethylene based anion exchange membranes (PE-AEMs) with high ionic conductivity", Macromolecules, 44, 5937 (2011). https://doi.org/10.1021/ma200836d
  44. T. W. Xu, "Ion exchange membranes: State of their development and perspective", J. Membr. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  45. R. S. L. Yee, R. A. Rozendal, K. Zhang, and B. P. Ladewig, "Cost effective cation exchange membranes: A review, Chem. Eng. Res. Des., 90, 950 (2012). https://doi.org/10.1016/j.cherd.2011.10.015
  46. E. Guler, R. Elizen, D. Vermaas, M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266 (2013). https://doi.org/10.1016/j.memsci.2013.06.045
  47. K. Matsui, E. Tobita, K. Sugimoto, K. Kondo, T. Seita, and A. Akimoto, "Novel anion exchange membranes having fluorocarbon backbone: Preparation and stability", J. Appl. Polym. Sci., 32, 4137 (1986). https://doi.org/10.1002/app.1986.070320327
  48. D. S. Kim, C. H. Fujimoto, M. R. Hibbs, A. Labouriau, Y.-K. Choe, and Y. S. Kim, "Resonance stabilized perfluorinated ionomers for alkaline membrane fuel cells", Macromolecules, 46, 7826 (2013). https://doi.org/10.1021/ma401568f
  49. J. G. Hong and Y. Chen, "Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation", J. Membr. Sci., 460, 139 (2014). https://doi.org/10.1016/j.memsci.2014.02.027
  50. E. Guler, R. Elizen, M. Saakes, and K. Nijmeijer, "Micro-structured membranes for electricity generation by reverse electrodialysis", J. Membr. Sci., 458, 136 (2014). https://doi.org/10.1016/j.memsci.2014.01.060
  51. P. Dlugolecki, A. Gambier, K. Nijmeijer, and M. Wessling, "Practical potential of reverse electrodialysis as process for sustainable energy generation", Environ. Sci. Technol., 43, 6888 (2009). https://doi.org/10.1021/es9009635
  52. A. Elattar, A. Elmidaoui, N. Pismenskaia, C. Gavach, and G. Pourcelly, "Comparison of transport properties of monovalent anions through anion-exchange membranes", J. Membr. Sci., 143, 249 (1998). https://doi.org/10.1016/S0376-7388(98)00013-1
  53. J. Veerman, R. DeJong, M. Saakes, S. Metz, and G. Harmsen, "Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density", J. Membr. Sci., 343, 7 (2009). https://doi.org/10.1016/j.memsci.2009.05.047
  54. R. Audinos, "Inverse electrodialysis. Study of electric energy obtained starting with two solutions of different salinity", J. Power Sources, 10, 203 (1983). https://doi.org/10.1016/0378-7753(83)80077-9
  55. J. Veerman, J. W. Post, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model", J. Membr. Sci., 310, 418 (2008). https://doi.org/10.1016/j.memsci.2007.11.032
  56. D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis", J. Membr. Sci., 453, 312 (2014). https://doi.org/10.1016/j.memsci.2013.11.005
  57. P. Dlugolecki, J. Dabrowska, K. Nijmeijer, and M. Wessling, "Ion conductive spacers for increased power generation in reverse electrodialysis", J. Membr. Sci., 347, 101 (2010). https://doi.org/10.1016/j.memsci.2009.10.011
  58. D, H, Kim and M, S, Kang, "Preparation and characterizations of ionomer-coated pore-filled ionexchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2010).
  59. S. M. Hosseini, A. Gholami, S. S. Madaeni, A. R. Moghadassi, and A. R. Hamidi, "Fabrication of (polyvinylchloride/celluloseacetate) electrodialysis heterogeneous cation exchange membrane: characterization and performance in desalination process", Desalination, 306, 51 (2012). https://doi.org/10.1016/j.desal.2012.07.028
  60. M. Arsalan, M. M. A. Khan, and Rafiuddin, "A comparative study of theoretical, electrochemical and ionic transport through PVC based $Cu_3(PO_4)_2$ and polystyrene supported $Ni_3(PO_4)_2 $composite ion exchange porous membranes", Desalination, 318, 97 (2013). https://doi.org/10.1016/j.desal.2013.03.014
  61. S. C. Georgea, M. knörgen, and S. Thomas, "Effect of nature and extent of crosslinking on swelling and mechanical behavior of styrene- butadiene rubber membranes", J. Membr. Sci., 163, 1 (1999). https://doi.org/10.1016/S0376-7388(99)00098-8
  62. S. P. Kim, B. K. Kim, H. M. Lee, J. W. Rhim, and S. I. Jeong, "Studies on the preparation of anion exchange membrane through blending of the poly(ethylenimine) and the poly(vinyl alcohol)", Membr. J., 20, 335 (2010).
  63. J. Hu, C. X. Zhang, J. Cong, H. Toyoda, M. Nagatsu, and Y. D. Meng, "Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell", J. Power Sources, 196, 4483 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.034
  64. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells.", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  65. J. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei, and Y. S. Chen, "Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review", J. Membr. Sci., 486, 71 (2015). https://doi.org/10.1016/j.memsci.2015.02.039
  66. S. Pawlowskia, T. Rijnaartsb, M. Saakes, K. Nijmeijer, J. G. Crespoa, and S. Velizarova, "Improved fluid mixing and power density in reverse electrodialysis stacks with chevron-profiled membranes", J. Membr. Sci., 531, 111 (2017). https://doi.org/10.1016/j.memsci.2017.03.003