DOI QR코드

DOI QR Code

Physiological Responses of Gray Mullet Mugil cephalus to Low-pH Water

사육수의 pH변화가 숭어(Mugil cephalus)에 미치는 생리적 영향

  • Moon, Hye-Na (Department of Marine life Science, Jeju National University) ;
  • Park, Jin-Hee (Hanwha Hotels and Resorts) ;
  • Park, Cheonman (Department of Marine life Science, Jeju National University) ;
  • Namgung, Jin (Department of Marine life Science, Jeju National University) ;
  • Kim, Ki-Hyuk (Department of Marine life Science, Jeju National University) ;
  • Yeo, In-Kyu (Department of Marine life Science, Jeju National University)
  • 문혜나 (제주대학교 해양생명과학과) ;
  • 박진희 (한화 호텔&리조트) ;
  • 박천만 (제주대학교 해양생명과학과) ;
  • 남궁진 (제주대학교 해양생명과학과) ;
  • 김기혁 (제주대학교 해양생명과학과) ;
  • 여인규 (제주대학교 해양생명과학과)
  • Received : 2017.01.11
  • Accepted : 2017.03.23
  • Published : 2017.04.30

Abstract

We examined changes in the physiological responses of gray mullet Mugil cephalus exposed to acidic seawater (pH 6.0, 6.5, 7.0) and normal seawater (pH 8.0, control) for 15 days. As pH decreased, survival rate and body weight also decreased. Levels of aminotransferase, total protein and triglycerides also differed significantly with changes in pH, presumably due to stress caused by exposure to acidic water. The level of osmotic pressure was significantly higher in the pH 6.0 group than in other groups. Superoxide dismutase was significantly higher in the pH 6.5 and 7.0 groups than in the pH 8.0 group, and glutathione level was lowest in the pH 6.0 group. We conclude that decreasing the pH level of seawater induces a stress response in fish, damaging their ability to control their hematological and osmotic pressure. Antioxidant enzymes are generally sensitive to osmotic stress; in this study, antioxidant activity significantly changed with pH level. These results indicate that physiological stress induced by exposure to acidification reduces survival rates and inhibits growth in M. cephalus.

Keywords

References

  1. ArasHisar S, Hisar O, Yanik T and Aras SM. 2004. Inhibitory effects of ammonia and urea on gill carbonic anhydrase enzyme activity of rainbow trout (Oncorhynchus mykiss). Environ Toxicol Pharmacol 17, 125-128. https://doi.org/10.1016/j.etap.2004.03.009
  2. Arrigo KR. 2007. Carbon cycle: Marine manipulations. Nature Reports Climate Change, 100-101. http://dx.doi.org/10.1038/450491a.
  3. Aksnes A and Njaa LR. 1981. Catalase, glutathione peroxidase and superoxide dismutase in different fish species. Comp Biochem Physiol B 69, 893-896. http://dx.doi.org/10.1016/0305-0491(81)90402-8.
  4. Bonga SW. 1997. The stress response in fish. Physiol Rev 77, 591-625. https://doi.org/10.1152/physrev.1997.77.3.591
  5. Calabrese A and Davis HC. 1966. The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica. Biological Bull 131, 427-436. http://dx.doi.org/10.2307/1539982.
  6. Chen CY, Wooster GA and Bowser PR. 2004. Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin, or copper sulfate. Aquaculture 239, 421-443. http://dx.doi.org/10.1016/j.aquaculture.2004.05.033.
  7. Dalton DA, Langeberg L and Treneman NC. 1993. Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiol Plant 87, 365-370. http://dx.doi.org/10.1111/j.1399-3054.1993.tb01743.x.
  8. Dixson DL, Jennings AR, Atema J and Munday PL. 2015. Odor tracking in sharks is reduced under future ocean acidification conditions. Glob Chang Biol 21, 1454-1462. http://dx.doi.org/10.1111/gcb.12678.
  9. Doney SC, Fabry VJ, Feely RA and Kleypas JA. 2009. Ocean acidification: the other $CO_2$ problem. Ann Rev Mar Sci 1, 169-192. http://dx.doi.org/10.1146/annurev.marine.010908.163834.
  10. Forman HJ and Fridovich I. 1973. On the stability of bovine superoxide dismutase the effects of metals. J Biol Chem 248, 2645-2649.
  11. Gabryelak T, Piatkowska M, Leyko W and Peres G. 1983. Seasonal variations in the activities of peroxide metabolism enzymes in erythrocytes of freshwater fish species. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 75, 383-385. http://dx.doi.org/10.1016/0742-8413(83)90210-4.
  12. Gattuso JP and Buddemeier RW. 2000. Ocean biogeochemistry: calcification and $CO_2$. Nature 407, 311-313. http://dx.doi.org/10.1038/35030280.
  13. Gattuso JP and Hansson L. 2011. Ocean acidification. Oxford university press. New York, U.S.A.
  14. Grottum JA and Sigholt T. 1996. Acute toxicity of carbon dioxide on European seabass (Dicentrarchus labrax): Mortality and effects on plasma ions. Comp Biochem Physiol A Physiol 115, 323-327. http://dx.doi.org/10.1016/S0300-9629(96)00100-4.
  15. Hannedoeche T, Lazaro M, Delgado AG, Boitard C, Lacour B and Grunfeld JP. 1991. Feedback-mediated reduction in glomerular filtration during acetazolamide infusion in insulindependent diabetic patients. Clin Sci 81, 457. http://dx.doi.org/10.1042/cs0810457.
  16. Kaur M, Atif F, Ali M, Rehman H and Raisuddin S. 2005. Heat stress-induced alterations of antioxidants in the freshwater fish Channa punctata Bloch. J Fish Biol 67, 1653-1665. http://dx.doi.org/10.1111/j.1095-8649.2005.00872.x.
  17. Kikkawa T, Ishimatsu A and Kita J. 2003. Acute $CO_2$ tolerance during the early developmental stages of four marine teleosts. Environ Toxicol 18, 375-382. http://dx.doi.org/10.1002/tox.10139.
  18. Kikkawa T, Kita J and Ishimatsu A. 2004. Comparison of the lethal effect of $CO_2$ and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar Pollut Bull 48, 108-110. http://dx.doi.org/10.1016/S0025-326X(03)00367-9.
  19. Kim YK, Jeong JB, Lee MK, Park SI, Park MA, Choe MK and Yeo IK. 2011. Pathophysiology of olive flounder Paralichthys olivaceus suffering from emaciation. J Fish Pathol 24, 11-18. http://dx.doi.org/10.7847/jfp.2011.24.1.011.
  20. Knutzen J. 1981. Effects of decreased pH on marine organisms. Mar Pollut Bull 12, 25-29. http://dx.doi.org/10.1016/0025-326X(81)90136-3.
  21. Kuwatani Y and Nishii T. 1969. Effects of pH of culture water on the growth of the Japanese pearl oyster. Bull Jpn Soc Sci Fish. 35, 242-250. http://dx.doi.org/10.2331/suisan.35.342.
  22. Lai F, Jutfelt F and Nilsson GE. 2015. Altered neurotransmitter function in $CO_2$-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv Physiol 3, cov018. http://dx.doi.org/10.1093/conphys/cov018.
  23. Lie O, Waagbo R and Sandnes K. 1988. Growth and chemical composition of adult Atlantic salmon (Salmo salar) fed dry and silage-based diets. Aquaculture 69, 343-353. http://dx.doi.org/10.1016/0044-8486(88)90341-9.
  24. McDonald DG and Wood CM. 1981. Branchial and renal acid and ion fluxes in the rainbow trout, Salnro guirdneri, at low environmentaI pH. J Exp Biol 93, 181-118.
  25. Molander DW, Wroblewski F and LaDue JS. 1955. Serum glutamic oxalacetic transaminase as an index of hepatocellular integrity. J Lab Clin Med 46, 831.
  26. Ou M, Hamilton TJ, Eom J, Lyall EM, Gallup J, Jiang A, Lee J, Close DA, Yun SS and Brauner CJ. 2015. Responses of pink salmon to $CO_2$-induced aquatic acidification. Nat Clim Chang 5, 950-955. http://dx.doi.org/10.1038/nclimate2694.
  27. Parihar MS, Dubey AK, Javeri T and Prakash P. 1996. Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipid content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated temperature. J Therm Biol 21, 323-330. http://dx.doi.org/10.1016/S0306-4565(96)00016-2.
  28. Parihar MS, Javeri T, Hemnani T, Dubey AK and Prakash P. 1997. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J Therm Biol 22, 151-156. http://dx.doi.org/10.1016/S0306-4565(97)00006-5.
  29. Portner HO, Reipschlager A and Heisler N. 1998. Acid-base regulation, metabolism and energetics in Sipunculus nudus as a function of ambient carbon dioxide level. J Exp Biol 201, 43-55.
  30. Portner HO, Langenbuch M and Reipschlager A. 2004. Biological impact of elevated ocean $CO_2$ concentrations: lessons from animal physiology and earth history. J Oceanogr 60, 705-718. http://dx.doi.org/10.1007/s10872-004-5763-0.
  31. Roche H and Boge G. 1996. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res 41, 27-43. http://dx.doi.org/10.1016/0141-1136(95)00015-1.
  32. Saunders RL, Henderson EB, Harmon PR, Johnston CE and Eales JG. 1983. Effects of low environmental pH on smolting of Atlantic salmon (Salmo salar). Can J Fish Aquatu Sci 408, 1203-1211. http://dx.doi.org/10.1139/f83-137.
  33. Schreck CB. 1982. Stress and rearing of salmonids. Aquaculture 28, 241-249. http://dx.doi.org/10.1016/0044-8486(82)90026-6.
  34. Solomon S, Qin D, Manning, M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL. 2007. Climate change 2007: The physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, U.S.A., 97.
  35. Winston GW and Di Giulio RT. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19, 137-161. https://doi.org/10.1016/0166-445X(91)90033-6
  36. Young G, Bjornsson BT, Prunet P, Lin RJ and Bern HA. 1989. Smoltification and seawater adaptation in coho salmon (Oncorhynchus kisutch): plasma prolactin, growth hormone, thyroid hormones, and cortisol. Gen Comp Endocrinol 74, 335-345. http://dx.doi.org/10.1016/S0016-6480(89)80029-2.
  37. Zhang J, Shen H, Wang X, Wu J and Xue Y. 2004. Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55, 167-174. http://dx.doi.org/10.1016/j.chemosphere.2003.10.048.