DOI QR코드

DOI QR Code

Recent Progress in Synthesis of Plate-like ZnO and its Applications: A Review

  • Jang, Eue-Soon (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • Received : 2017.03.15
  • Accepted : 2017.05.08
  • Published : 2017.05.31

Abstract

Zinc oxide (ZnO) is one of the most versatile semiconductors, and one-dimensional (1D) ZnO nanostructures have attracted significant interest for use in ultraviolet (UV) lasers, photochemical sensors, and photocatalysts, among other applications. It is known that 1D ZnO nanowires can be fabricated readily owing to the anisotropic growth of ZnO along the [0001] direction. However, this type of growth results in a decrease in the surface area of the (0001) plane, which plays a vital role not only in UV lasing but also in the photocatalytic process. Thus, we attempted to synthesize ZnO crystals with an increased polar surface area by controlling the crystal growth process. The purpose of this review is to propose a simple route for the synthesis of plate-like ZnO crystals with highly enhanced polar surfaces and to explore their feasibility for use in UV lasers as well as as a photocatalyst and antibacterial agent. In addition, we highlight the recent progress made in the pilot-scale synthesis of plate-like ZnO crystals for industrial applications.

Keywords

References

  1. G. A. O. Oprea, E. Andronescu, D. Ficai, A. Ficai, F. N. Oktar, and M. Yetmez, "ZnO Applications and Challenges," Curr. Org. Chem., 18 [2] 192-203 (2014). https://doi.org/10.2174/13852728113176660143
  2. O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, and A. Kahru, "Toxicity of Ag, CuO and ZnO Nanoparticles to Selected Environmentally Relevant Test Organisms and Mammalian Cells In Vitro: a Critical Review," Arch. Toxicol., 87 [7] 1181-200 (2013). https://doi.org/10.1007/s00204-013-1079-4
  3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science, 292 [8] 1897-99 (2001). https://doi.org/10.1126/science.1060367
  4. D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, "Polariton and Free-Exciton-Like Photoluminescence in ZnO," Appl. Phys. Lett., 79 [23] 3794-96 (2001). https://doi.org/10.1063/1.1412435
  5. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, "Condensation of Semiconductor Microcavity Exciton Polaritons," Science, 298 [4] 199-202 (2002). https://doi.org/10.1126/science.1074464
  6. M. Zamfirescu, A. Kavokin, B. Gil, and G. Malpuech, "ZnO as a Material Mostly Adapted for Realization of Room-Temperature Polariton Lasers," Phys. Status Solidi A, 195 [3] 563-67 (2003). https://doi.org/10.1002/pssa.200306153
  7. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, "Optically Pumped Lasing of ZnO at Room Temperature," Appl. Phys. Lett., 70 [17] 2230-32 (1997). https://doi.org/10.1063/1.118824
  8. J.-H. Choy, E.-S. Jang, J.-H. Won, J.-H. Chung, D.-J. Jang, Y.-W. Kim, "Hydrothermal Route to ZnO Nanocoral Reefs and Nanofibers," Appl. Phys. Lett., 84 [2] 287-89 (2004). https://doi.org/10.1063/1.1639514
  9. R. A. Laudise and A. A. Ballman, "Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide," J. Phys. Chem., 64 [5] 688-91 (1960). https://doi.org/10.1021/j100834a511
  10. R. S. Wagner and W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth,"Appl. Phys. Lett., 4 [5] 89-90 (1964). https://doi.org/10.1063/1.1753975
  11. Y. Wu and P. Yang, "Direct Observation of Vapor-Liquid-Solid Nanowire Growth," J. Am. Chem. Soc., 123 [13] 3165-66 (2001). https://doi.org/10.1021/ja0059084
  12. Y. Xia, P. Yang, Y. Sun, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications," Adv. Mater., 15 [5] 353-89 (2003). https://doi.org/10.1002/adma.200390087
  13. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, "Stability of Polar Oxide Surfaces," Phys. Rev. Lett., 86 3811-14 (2001). https://doi.org/10.1103/PhysRevLett.86.3811
  14. J. I. Sohn, W.-K. Hong, S. Lee, S. Lee, J. Ku, Y. J. Park, J. Hong, S. Hwang, K. H. Park, J. H. Warner, S. Cha, and J. M. Kim, "Surface Energy-Mediated Construction of Anisotropic Semiconductor Wires with Selective Crystallographic Polarity," Sci. Rep., 4 5680 (2014).
  15. M. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, "Room-Temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory," Phys. Rev. Lett., 108 [15] 157402 (2012). https://doi.org/10.1103/PhysRevLett.108.157402
  16. Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, "Synthesis and Optical Properties of Tetrapod-like Zinc Oxide Nanorods," Chem. Phys. Lett., 358 [1-2] 83-6 (2002). https://doi.org/10.1016/S0009-2614(02)00582-1
  17. Z. Chen, Z. Shan, M. S. Cao, L. Lu, and S. X. Mao, "Zinc Oxide Nanotetrapods", Nanotechnology, 15 [3] 365 (2004). https://doi.org/10.1088/0957-4484/15/3/023
  18. Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of Semiconducting Oxides," Science, 291 [5510] 1947-49 (2001). https://doi.org/10.1126/science.1058120
  19. Z. R. Dai, Z. W. Pan, and Z. L. Wang, "Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation," Adv. Funct. Mater., 13 [1] 9-24 (2003). https://doi.org/10.1002/adfm.200390013
  20. X. Y. Kong and Z. L. Wang, "Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts", Nano Lett., 3 [12] 1625-31 (2003). https://doi.org/10.1021/nl034463p
  21. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, "Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts," Science, 303 [5662] 1348-51 (2004). https://doi.org/10.1126/science.1092356
  22. J.-H. Choy, E.-S. Jang, J.-H. Won, J.-H. Chung, D.-J. Jang, and Y.-W. Kim, "Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet Laser," Adv. Mater., 15 [22] 1911-14 (2003). https://doi.org/10.1002/adma.200305327
  23. E.-S. Jang, X. Chen, J.-H. Won, J.-H. Chung, D.-J. Jang, Y.-W. Kim, and J.-H. Choy, "Soft-Solution Route to ZnO Nanowall Array with Low Threshold Power Density," Appl. Phys. Lett., 97 043109 (2010). https://doi.org/10.1063/1.3466910
  24. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Mcdermott, "Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns," J. Am. Chem. Soc., 124 12954-55 (2002). https://doi.org/10.1021/ja0279545
  25. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-Gallery Mode Microdisk Lasers," Appl. Phys. Lett., 60 [3] 289-91 (1992). https://doi.org/10.1063/1.106688
  26. R. G. Nazmitdinov, K. N. Pichugin, I. Rotter, and P. Seba, "Whispering Gallery Modes in Open Quantum Billiards," Phys. Rev. E, 64 056214 (2001). https://doi.org/10.1103/PhysRevE.64.056214
  27. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, "Room-Temperature Continuous-Wave Lasing in GaN/InGaN Microdisks," Nat. Photonics, 1 61-4 (2007). https://doi.org/10.1038/nphoton.2006.52
  28. C. Kim, Y.-J. Kim, E.-S. Jang, G.-C. Yi, and H. H. Kim, "Whispering-Gallery-Modelike-Enhanced Emission from ZnO Nanodisk," Appl. Phys. Lett., 88 093104 (2006). https://doi.org/10.1063/1.2174122
  29. W. Li, S. Gao, L. Li, S. Jiao, Q. Yu, H. Li, J. Wang, Q. Yu, Y. Zhang, and D. Wang, "A Facile Solution Synthesis of ZnO Nanoplates on Al Substrate at Room Temperature," Mater. Lett., 185 161-64 (2016). https://doi.org/10.1016/j.matlet.2016.08.021
  30. P. W. Tasker, "The Stability of Ionic Crystal Surfaces," J. Phys. C: Solid State Phys., 12 4977-84 (1979). https://doi.org/10.1088/0022-3719/12/22/036
  31. O. Dulub, U. Deibold, and G. Kresse, "Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn," Phys. Rev. Lett., 90 [1] 016102 (2003). https://doi.org/10.1103/PhysRevLett.90.016102
  32. V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, S. G. Girol, U. Burghaus, and C. Woll, "Stabilization of Polar ZnO Surfaces: Validating Microscopic Models by Using CO as a Probe Molecule," Phys. Rev. Lett., 90 [10] 106102 (2003). https://doi.org/10.1103/PhysRevLett.90.106102
  33. E.-S. Jang, J.-H. Won, S.-J. Hwang, and J.-H. Choy, "Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity", Adv. Mater., 18 3309-12 (2006). https://doi.org/10.1002/adma.200601455
  34. E.-S. Jang, J.-H. Won, Y.-W. Kim, Z. Cheng, and J.-H. Choy, "Dynamic Transition between Zn-HDS and ZnO; Growth and Dissolving Mechanism of Dumbbell-like ZnO Bipod Crystal," CrystEngComm, 13 546-52 (2011). https://doi.org/10.1039/C003458D
  35. J. H. Zeng, B. B. Jin, and Y. F. Wang, "Facet Enhanced Photocatalytic Effect with Uniform Single-Crystalline Zinc Oxide Nanodisks," Chem. Phys. Lett., 472 90-95 (2009). https://doi.org/10.1016/j.cplett.2009.02.082
  36. R. Boppella, K. Anjaneyulu, P. Basak, and S. V. Manorama, "Facile Synthesis of Face Oriented ZnO Crystals: Tunable Polar Facets and Shape Induced Enhanced Photocatalytic Performance," J. Phys. Chem. C, 117 4597-605 (2013). https://doi.org/10.1021/jp311443s
  37. M. Huang, Y. Yan, W. Feng, S. Weng, Z. Zheng, X. Fu, and P. Liu, "Controllable Tuning Various Ratios of ZnO Polar Facets by Crystal Seed-Assisted Growth and Their Photocatalytic Activity," Cryst. Growth Des., 14 2179-86 (2014). https://doi.org/10.1021/cg401676r
  38. G. Tang, S. Tian, Z. Zhou, Y. Wen, A. Pang, Y. Zhang, D. Zeng, H. Li, B. Shan, and C. Xie, "ZnO Micro/Nanocrystals with Tunable Exposed (0001) Facets for Enhanced Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate," J. Phys. Chem. C, 118 11833-41 (2014). https://doi.org/10.1021/jp503510x
  39. Y. Chen, H. Zhao, B. Liu, and H. Yang, "Charge Separation between Wurtzite ZnO Polar {0001} Surfaces and Their Enhanced Photocatalytic Activity," Appl. Catal., B, 163 189-97 (2015). https://doi.org/10.1016/j.apcatb.2014.07.044
  40. Y. Zhang, C. Liu, F. Gong, B. Jiu, and F. Li, "Large Scale Synthesis of Hexagonal Simonkolleit Nanosheets for ZnO Gas Sensors with Enhanced Performances," Mater. Lett., 186 7-11 (2017). https://doi.org/10.1016/j.matlet.2016.09.080
  41. E. D. Brown and G. D. Wright, "New Targets and Screening Approaches in Antimicrobial Drug Discovery," Chem. Rev., 105 759-74 (2005). https://doi.org/10.1021/cr030116o
  42. H.-J. Yang, H.-J. Kim, J. Yu, E. Lee, Y.-H. Jung, H.-Y. Kim, J.-H. Seo, G.-Y. Kwon, J.-H. Park, J. Gwack, S.-K. Youn, J.-W. Kwon, B.-Y. Jun, K. W. Kim, K. Ahn, S.-Y. Lee, J.-D. Park, J.-W. Kwon, B.-J. Kim, M.-S. Lee, K.-H. Do, S.-J. Jang, B.-Y. Pyun, and S. J. Hong, "Inhalation Toxicity of Humidifier Disinfectants as a Risk Factor of Children's Interstitial Lung Disease in Korea: A Case-Control Study," PLoS One, 8 [6] e64430 (2013). https://doi.org/10.1371/journal.pone.0064430
  43. H. R. Kim, K. Lee, C. W. Park, J. A. Song, D. Y. Shin, Y. J. Park, and K. H. Chung, "Polyhexamethylene Guanidine Phosphate Aerosol Particles Induce Pulmonary Inflammatory and Fibrotic Responses," Arch. Toxicol., 90 [3] 617-32 (2016). https://doi.org/10.1007/s00204-015-1486-9
  44. R. Brayner, R. F-Iliou, N. Brivois, S. Djediat, M. F. Benedetti, and F. Fievet, "Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium," Nano Lett., 6 [4] 866-70 (2006). https://doi.org/10.1021/nl052326h
  45. G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, and A. Gedanken, "Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury" Adv. Funct. Mater., 19 [6] 842-52 (2009). https://doi.org/10.1002/adfm.200801081
  46. K. Ali, S. Dwivedi, A. Azam, Q. Saquib, M. S. Al-Said, A. A. Alkhedhairy, and J. Musarrat, "Aloe Vera Extract Functionalized Zinc Oxide Nanoparticles as Nanoantibiotics Against Multi-Drug Resistant Clinical Bacterial Isolates," J. Colloid Interface Sci., 472 145-56 (2016). https://doi.org/10.1016/j.jcis.2016.03.021
  47. S. Dwivedi, R. Wahab, F. Khan, Y. K. Mishra, J. Musarrat, and A. A. Al-Khedhairy, "Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and their Statistical Determination," PLoS One, 9 e111289 (2014). https://doi.org/10.1371/journal.pone.0111289
  48. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic, "Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria: a Comparative Study," Int. J. Nanomed., 7 6003-9 (2012).
  49. S. A. Ansari, Q. Husain, S. Qayyum, and A. Azam, "Designing and Surface Modification of Zinc Oxide Nanoparticles for Biomedical Applications," Food Chem. Toxicol., 49 [9] 2107-15 (2011). https://doi.org/10.1016/j.fct.2011.05.025
  50. M. A. Ansari, H. M. Khan, A. A. Khan, A. Sultan, and A. Azam, "Synthesis and Characterization of the Antibacterial Potential of ZnO Nanoparticles against Extended-Spectrum ${\beta}$-Lactamases-Producing Escherichia coli and Klebsiella pneumoniae Isolated from a Tertiary Care Hospital of North India," Appl. Microbiol. Biotech., 94 [2] 467-77 (2012). https://doi.org/10.1007/s00253-011-3733-1
  51. Y. Li, W. Zhang, J. Niu, and Y. Chen, "Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles," ACS Nano, 6 [6] 5164-73 (2012). https://doi.org/10.1021/nn300934k
  52. N. Padmavathy and R. Vijayaraghavan, "Enhanced Bioactivity of ZnO Nanoparticles−an Antimicrobial Study," Sci. Technol. Adv. Mater., 9 [3] 035004 (2008). https://doi.org/10.1088/1468-6996/9/3/035004
  53. A. B. Djurisic, Y. H. Leung, A. M. C. Ng, X. Y. Xu, P. K. H. Lee, N. Degger, and R. S. S. Wu, "Toxicity of Metal Oxide Nanoparticles: Mechanisms, Characterization, and Avoiding Experimental Artefacts," Small, 11 [1] 26-44 (2015). https://doi.org/10.1002/smll.201303947
  54. M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. J. D. Aberasturi, I. R. D. Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, "Antibacterial Properties of Nanoparticles," Trends Biotech., 30 [10] 499-511 (2012). https://doi.org/10.1016/j.tibtech.2012.06.004
  55. K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, and H. Sugimoto, "Preparation of Zinc Oxide Ceramics with a Sustainable Antibacterial Activity under Dark Conditions", Ceram. Int., 36 [2] 497-506 (2010). https://doi.org/10.1016/j.ceramint.2009.09.026
  56. X. Xu, D. Chen, Z. Yi, M. Jiang, L. Wang, Z. Zhou, X. Fan, Y. Wang, and D. Hui, "Antimicrobial Mechanism Based on $H_2O_2$ Generation at Oxygen Vacancies in ZnO Crystals," Langmuir, 29 [18] 5573-80 (2013). https://doi.org/10.1021/la400378t
  57. V. L. Prasanna and R. Vijayaraghavan, "Insight into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Oxygen Species Even in the Dark," Langmuir, 31 [33] 9155-62 (2015). https://doi.org/10.1021/acs.langmuir.5b02266
  58. M. Li, L. Zhu, and D. Lin, "Toxicity of ZnO Nanoparticles to Escherichia coli: Mechanism and the Influence of Medium Components," Environ. Sci. Technol., 45 [5] 1977-83 (2011). https://doi.org/10.1021/es102624t
  59. Y. W. Wang, A. Cao, Y. Jiang, X. Zhang, J. H. Liu, Y. Liu, and H. Wang, "Superior Antibacterial Activity of Zinc Oxide/Graphene Oxide Composites Originating from High Zinc Concentration Localized around Bacteria," ACS Appl. Mater. Interfaces, 6 [4] 2791-98 (2014). https://doi.org/10.1021/am4053317
  60. K. R. Raghupathi, R. T. Koodali, and A. C. Manna, "Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles," Langmuir, 27 [7] 4020-28 (2011). https://doi.org/10.1021/la104825u
  61. K. H. Tam, A. B. Djurisic, C. M. N. Chan, Y. Y. Xi, C. W. Tse, Y. H. Leung, W. K. Chan, F. C. C. Leung, and D. W. T. Au, "Antibacterial Activity of ZnO Nanorods Prepared by a Hydrothermal Method," Thin Solid Films, 516 [18] 6167-74 (2008). https://doi.org/10.1016/j.tsf.2007.11.081
  62. Y. Liu, L. He, A. Mustapha, H. Li, Z. Q. Hu, and M. Lin, "Antibacterial Activities of Zinc Oxide Nanoparticles against Escherichia coli O157:H7," J. Appl. Microbiol., 107 [4] 1193-201 (2009). https://doi.org/10.1111/j.1365-2672.2009.04303.x
  63. A. Joe, S.-H. Park, K.-D. Shim, D.-J. Kim, K.-H. Jhee, H.-W. Lee, C.-H. Heo, H.-M. Kim, and E.-S. Jang, "Antibacterial Mechanism of ZnO Nanoparticles under Dark Conditions," J. Ind. Eng. Chem., 45 430-39 (2017). https://doi.org/10.1016/j.jiec.2016.10.013
  64. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, H. K. A Cho, "A Comparative Analysis of Deep Level Emission in ZnO Layers Deposited by Various Methods", J. Appl. Phys., 105 013502 (2009). https://doi.org/10.1063/1.3054175
  65. L. Spanhel and M. A. Anderson, "Semiconductor Clusters in the Sol-Gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated Zinc Oxide Colloids," J. Am. Chem. Soc., 113 [8] 2826-33 (1991). https://doi.org/10.1021/ja00008a004
  66. P. S. Hale, L. M. Maddox, J. G. Shapter, N. H. Voelcker, M. J. Ford, and E. R. Waclawik, "Growth Kinetics and Modeling of ZnO Nanoparticles," J. Chem. Edu., 82 [5] 775-78 (2005). https://doi.org/10.1021/ed082p775
  67. D.-J. Kim, B.-M. Kim, A. Joe, K.-D. Shim, H.-W. Han, G.-H. Noh, and E.-S. Jang, "Large-Scale Synthesis of Plate-Type ZnO Crystal with High Photocatalytic Activity", J. Kor. Chem. Soc., 59 [2] 148-55 (2015). https://doi.org/10.5012/jkcs.2015.59.2.148

Cited by

  1. Optical Properties of ZnO/Al/Ag/ZnO Multilayers as Near Infrared Cut-off Filters vol.73, pp.7, 2018, https://doi.org/10.3938/jkps.73.858
  2. An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors vol.55, pp.5, 2018, https://doi.org/10.4191/kcers.2018.55.5.01
  3. nanocluster/nanorod films for photoactive applications vol.47, pp.21, 2018, https://doi.org/10.1039/C8DT01348A
  4. Micro-Cavity Effect of ZnO/Ag/ZnO Multilayers on Green Quantum Dot Light-Emitting Diodes vol.55, pp.2, 2018, https://doi.org/10.4191/kcers.2018.55.2.09
  5. CdO-implanted hexagonal ZnO nanoplatelets: red-shifted emission and enhanced charge carrier-resistance and bacteria-inactivation vol.125, pp.1, 2019, https://doi.org/10.1007/s00339-018-2318-6
  6. Effects of aging conditions on the morphologies of ZnO particles synthesized under hydrothermal conditions from layered zinc hydroxide as a precursor derivered from zinc acetate vol.8, pp.1, 2017, https://doi.org/10.1080/21870764.2019.1709692
  7. A Comparative Study of Antibacterial Activity of CuO/Ag and ZnO/Ag Nanocomposites vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/7814324
  8. Development and Characterization of Clay–Nanocomposites for Water Purification vol.13, pp.17, 2017, https://doi.org/10.3390/ma13173793
  9. Efficient photocatalytic degradation of dyes using photo-deposited Ag nanoparticles on ZnO structures: simple morphological control of ZnO vol.11, pp.15, 2017, https://doi.org/10.1039/d0ra10945b
  10. Heterostructure of ZnO Nanosheets/Zn with a Highly Enhanced Edge Surface for Efficient CO2 Electrochemical Reduction to CO vol.13, pp.9, 2021, https://doi.org/10.1021/acsami.0c20302
  11. Ag 또는 CuO를 코팅한 평판형 ZnO 분말의 합성 및 항균성 평가 vol.54, pp.3, 2021, https://doi.org/10.5695/jkise.2021.54.3.144