DOI QR코드

DOI QR Code

A Study on the Shielding Element Using Monte Carlo Simulation

몬테카를로 시뮬레이션을 이용한 차폐체 원소 평가

  • Kim, Ki-Jeong (Department of Radiology, Konkuk University Medical Center) ;
  • Shim, Jae-Goo (Department of Radiologic Technology, Daegu Health College)
  • 김기정 (건국대학교병원 영상의학과) ;
  • 심재구 (대구보건대학교 방사선과)
  • Received : 2017.06.07
  • Accepted : 2017.06.12
  • Published : 2017.06.30

Abstract

In this research, we simulated the elementary star shielding ability using Monte Carlo simulation to apply medical radiation shielding sheet which can replace existing lead. In the selection of elements, mainly elements and metal elements having a large atomic number, which are known to have high shielding performance, recently, various composite materials have improved shielding performance, so that weight reduction, processability, In consideration of activity etc., 21 elements were selected. The simulation tools were utilized Monte Carlo method. As a result of simulating the shielding performance by each element, it was estimated that the shielding ratio is the highest at 98.82% and 98.44% for tungsten and gold.

본 연구에서는 기존의 납을 대체할 수 있는 의료방사선 차폐시트 적용을 위해 몬테카를로 시뮬레이션을 이용하여 각각에 대한 원소별 차폐능을 모의 추정하였다. 원소들의 선정은 차폐성능이 큰 것으로 알려진 원자번호가 큰 원소와 금속원소를 중심으로 최근에는 다양한 복합재들이 차폐성능을 향상시킨다는 보고에 따라 경량화, 가공성, 활동성 등을 고려하여 21개 원소를 선정하였다. 몬테카를로 시뮬레이션 코드를 이용한 전산모사 투과도 실험으로 21개의 원소를 대상으로 시뮬레이션 하여 추정한 결과 납을 대체할 차폐물질로 적당한 원소의 투과율은 텅스텐(w) 98.82%, 가돌리늄(Gd) 92.96%, 주석(Sn) 86.87%, 인듐(In) 86.38%, 안티몬(Sb) 86.33%, 바륨(Ba) 78.51%로 평가되었으며, 각 원소별 차폐성능을 모의 추정한 결과 텅스텐과 금이 98.82%와 98.44%로 차폐율이 가장 높은 것으로 추정되었다. 경제성과 가공성을 고려할 때 위 원소를 화합한 물질로 차폐체를 만드는 것이 적절할 것으로 사료된다.

Keywords

References

  1. Hyun-Chul Cho: Study on perception and behavior about radiation safety management and Measurement of radiation dose for workers who work in the angiography room, Graduate School of Public Health Korea University, 2004
  2. Akio, Sato: About the outline about the radiation pamphlet for the citizen, 4th The International Joint Conference of KTJ Radiological Technologists, 2001
  3. You-Hyun Kim, Jong-Hak Choi, Sung-Soo Kim, et al.: Patient exposure doses from medical x-ray examinations in Korea, Journal of radiological science and technology, 28, 2005
  4. Korea Industry Society Association: Safety Policy against lead poisoning, KISA, 05, 1995
  5. Judith F. Briesmeister: MCNPTM A General Monte Carlo N-Particle Transport Code. Version 4C, 2000
  6. Seon-chil Kim, Kyo-tae Kim, Ji-koon Park: Barium Compounds through Monte Carlo Simulations Compare the Performance of Medical Radiation Shielding Analysis, Journal of the Korean Society of Radiology, 7(6), 403-408, 2013 https://doi.org/10.7742/jksr.2013.7.6.403
  7. M Sohrabpour, M Hassanzadeh, M Shahriari, et al.: Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry, Applied radiation and isotopes, 57(4), 537-542, 2002 https://doi.org/10.1016/S0969-8043(02)00130-6
  8. Calzada Elbio, Gruauer Florian, Schillinger Burkhard, et al.: Reusable shielding material for neutron and gamma-radiation, Nuclear Instruments and Methods in Physics Research, doi:10.1016/j.nima.2010.12.239, 2011
  9. Rogers D W O: Fifty years of Monte Carlo simulations for medical physics This paper is dedicated to W Ralph Nelson and to the memory of Martin J Berger, two men who have left indelible marks on the field of Monte Carlo simulation of electron-photon transport, Physics in medicine and biology, 51(13), R287, 2006 https://doi.org/10.1088/0031-9155/51/13/R17
  10. Metcalfe Peter, Peter Hoban, Tomas Kron: The physics of radiotherapy X-rays from linear accelerators, Medical Physics Publishing, 1997
  11. Akkurt I, Basyigit C, Kilincarslan S, et al.: Radiation shielding of concretes containing different aggregates, Cement and Concrete Composites, 28(2), 153-157, 2006 https://doi.org/10.1016/j.cemconcomp.2005.09.006
  12. Friedman H. W., M. S. Singh: Radiation Transmission Measurements for Demron Fabric, Lawrence Livermore National Laboratory, Livermore, CA, Transparent polymers embedding nanoparticles for X-rays attenuation, 2003
  13. Seon-Chil Kim, Myeong-Hwan Park: Development of radiation shielding sheet with environmentally-friendly materials; II: Evaluation of barum, tourmaline, silicon polymers in the radiation shielding sheet, Journal of radiological science and technology, 34, 2011
  14. Kyo-tae Kim, Sang-Sik Kang, Si-Cheul Noh, et al.: Absorbed spectrum comparison of lead and tungsten in continuous x-ray energy using monte carlo simulation, Journal of the Korean Society of Radiology, 6(6), 483-487, 2012 https://doi.org/10.7742/jksr.2012.6.6.483