DOI QR코드

DOI QR Code

Facilitated Transport: Basic Concepts and Applications to Gas Separation Membranes

촉진수송: 기본 개념 및 기체분리막 응용

  • Park, Cheol Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 박철훈 (연세대학교 화공생명공학과) ;
  • 이재훈 (연세대학교 화공생명공학과) ;
  • 박민수 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2017.06.20
  • Accepted : 2017.06.22
  • Published : 2017.06.30

Abstract

Polymer membranes are cheap and easy in fabrication, and show a high permeability and selectivity, thus play pivotal roles in gas separation as well as water purification. However, polymer membranes typically exhibit the trade-off relation between permeability and selectivity; i.e. when the permeability is high, the selectivity is low and vice versa. Facilitated transport has been considered one of the solutions to address this issue. Over the last decades, facilitated transport concept had played an important role in preparing the membranes and providing ideal and various models for the transport. Understanding the nature of carrier, the mobility of matrix and the physico-chemical properties of polymer composites are crucial for facilitated transport. Depending on the mobility of carrier, facilitated transport membrane is classified into three; mobile carrier membrane, semi-mobile carrier membrane, fixed-site carrier membrane. Also, there are four types of reversible reaction between the carrier and the specific target; proton transfer reaction, nucleophilic addition reaction, p-complexation reaction and electrochemical reaction. The facilitated transport membranes have been applied in the separation of CO2, O2 and olefin (propylene or ethylene). In this review, major challenges surrounding facilitated transport membranes and the strategies to tackle these challenges are given in detail.

고분자 분리막은 가격이 저렴하고, 쉽게 제조가 가능하며, 투과도와 선택도가 우수하여 수처리 분야뿐만 아니라 기체분리에서도 중요한 역할을 한다. 하지만, 고분자 분리막은 일반적으로 투과도와 선택도의 역상관 관계를 나타내는 단점이 있다; 즉, 투과도가 높으면 선택도가 낮고, 선택도가 높으면 투과도가 높다. 이러한 단점을 극복하기 위한 방안 중의 하나가 촉진수송이다. 지난 수십 년간 촉진수송 이론은 촉진수송 분리막 제조에 있어 매우 중요하고 다양한 모델을 제시하는 데에 핵심적인 역할을 하였다. 한편, 촉진수송에서 주된 역할을 하는 운반체의 특성, 매질의 유동성 및 고분자 복합체의 물리화학적 성질 등을 이해하는 것은 중요하다. 운반체의 유동성에 따라 촉진수송 분리막의 종류를 3가지로 나눌 수 있다; 즉, 이동상 운반체 분리막, 준이동상 운반체 분리막, 고정상 운반체 분리막. 또한 촉진 운반체가 특정물질과 상호작용하는 데에는 4가지 종류의 가역반응으로 나눌 수 있다; 즉, 수소원자 전달 반응, 친핵성 첨가반응, 파이-착체 반응, 그리고 전기화학 반응. 이러한 촉진수송 분리막은 이산화탄소, 산소, 올레핀(프로필렌, 에틸렌)의 투과도를 선택적으로 향상시키는 역할을 한다. 이와 같이 본 총설에서는 다양한 촉진수송 분리막에 관련된 주요 연구내용과 이러한 연구를 수행하는 대표적인 전략들을 소개하고자 한다.

Keywords

References

  1. Y. Li, S. Wang, G. He, H. Wu, F. Pan, and Z. Jiang, "Facilitated transport of small molecules and ions for energy-efficient membranes". Chem. Soc. Rev., 44, 103 (2015). https://doi.org/10.1039/C4CS00215F
  2. E. L. Cussler, R. Aris, and A. Bhown, "On the limits of facilitated diffusion", J. Membr. Sci., 43, 149 (1989). https://doi.org/10.1016/S0376-7388(00)85094-2
  3. F. Pitsch, F. F. Krull, F. Agel, P. Schulz, P. Wasserscheid, T. Melin, and M. Wessling, "An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations", Adv. Mater., 24, 4306 (2012). https://doi.org/10.1002/adma.201201832
  4. M. Almeida, R. W. Cattrall, and S. D. Kolev, "Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs)", J. Membr. Sci., 415, 9 (2012).
  5. K. Ramasubramanian, Y. Zhao, and W. S. Winston Ho, " $CO_2$ capture and $H_2$ purification: Prospects for $CO_2$-selective membrane processes", AIChE J., 59, 1033 (2013). https://doi.org/10.1002/aic.14078
  6. J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and preparation of PEG-polyimide copolymer asymmetric flat sheet membranes for carbon dioxide separation", Membr. J., 25, 547 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.547
  7. W. S. Chi, J. H. Lee, M. S. Park and J. H. Kim, "Recent Research Trends of Mixed Matrix Membranes for $CO_2$ Separation", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373
  8. Y. Li, G. He, S. Wang, S. Yu, F. Pan, H. Wu and Z. Jiang, "Recent advances in the fabrication of advanced composite membranes", J. Mater. Chem. A, 1, 10058 (2013). https://doi.org/10.1039/c3ta01652h
  9. Y. I. Park, H. R. Song, S. E. Nam, Y. K. Hwang, J. S. Chang, U. H. Lee, and Y. I. Park, "Preparation and characterization of mixed-matrix membranes containing MIL-100(Fe) for gas separation", Membr. J., 23, 432 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.432
  10. Y. S. Kang, J. H. Kim, J. Won, and H. S. Kim, "Materials Science of Membranes for Gas and Vapor Separation", Eds. Y. Yampolskii, I. Pinnau and B. Freeman, pp. 391-410, John Wiley & Sons, Chichester, CHICH (2006).
  11. S. Li, Z. Wang, X. Yu, J. Wang, and S. Wang, "High‐performance membranes with multi-permselectivity for $CO_2$ separation", Adv. Mater., 24, 3196 (2012). https://doi.org/10.1002/adma.201200638
  12. Y. S. Kang, S. W. Kang, H. Kim, J. H. Kim, J. Won, C. K. Kim, and K. Char, "Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-Benzoquinone and its implications for facilitated olefin transport", Adv. Mater., 19, 475 (2007). https://doi.org/10.1002/adma.200601009
  13. S. W. Kang, K. Char, and Y. S. Kang, "Novel application of partially positively charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes", Chem. Mater., 20, 1308 (2008). https://doi.org/10.1021/cm071516l
  14. I. S. Chae, S. W. Kang, J. Y. Park, Y.-G. Lee, J. H. Lee, J. Won, and Y. S. Kang, "Surface energy- level tuning of silver nanoparticles for facilitated olefin transport", Angew. Chem., Int. Ed., 50, 2982 (2011). https://doi.org/10.1002/anie.201007557
  15. F. Y. Li, Y. Li, T. S. Chung, and S. Kawi, "Facilitated transport by hybrid POSS-Matrimid- $Zn^{2+}$ nanocomposite membranes for the separation of natural gas", J. Membr. Sci., 356, 14 (2010). https://doi.org/10.1016/j.memsci.2010.03.021
  16. J. H. Oh, Y. S. Kang, and S. W. Kang, "Poly(vinylpyrrolidone)/ KF electrolyte membranes for facilitated $CO_2$ transport", Chem. Commun., 49, 10181 (2013). https://doi.org/10.1039/c3cc46253f
  17. J. H. Lee, J. Hong, J. H. Kim, Y. S. Kang, and S. W. Kang, "Facilitated $CO_2$ transport membranes utilizing positively polarized copper nanoparticles", Chem. Commun., 48, 5298 (2012). https://doi.org/10.1039/c2cc17535e
  18. S. Kasahara, E. Kamio, T. Ishigami, and H. Matsuyama, "Amino acid ionic liquid-based facilitated transport membranes for $CO_2$ separation", Chem. Commun., 48, 6903 (2012). https://doi.org/10.1039/c2cc17380h
  19. S. Kasahara, E. Kamio, A. Yoshizumi, and H. Matsuyama, "Polymeric ion-gels containing an amino acid ionic liquid for facilitated $CO_2$ transport media", Chem. Commun., 50, 2996 (2014). https://doi.org/10.1039/C3CC48231F
  20. M. Poloncarzova, J. Vejrazka, V. Vesely, and P. Izak, "Effective purification of biogas by a condensing- liquid membrane", Angew. Chem., Int. Ed., 50, 669 (2011). https://doi.org/10.1002/anie.201004821
  21. L. Zhang, N. Xu, X. Li, S. Wang, K. Huang, W. H. Harris, and W. K. S. Chiu, "High $CO_2$ permeation flux enabled by highly interconnected three-dimensional ionic channels in selective $CO_2$ separation membranes", Energy Environ. Sci., 5, 8310 (2012). https://doi.org/10.1039/c2ee22045h
  22. T. C. Merkel, R. Blanc, I. Ciobanu, B. Firat, A. Suwarlim, and J. Zeid, "Silver salt facilitated transport membranes for olefin/paraffin separations: Carrier instability and a novel regeneration method", J. Membr. Sci., 447, 177 (2013). https://doi.org/10.1016/j.memsci.2013.07.010
  23. S. W. Kang, J. H. Kim, J. Won, and Y. S. Kang, "Suppression of silver ion reduction by $Al(NO_{3})_{3}$ complex and its application to highly stabilized olefin transport membranes", J. Membr. Sci., 445, 156 (2013). https://doi.org/10.1016/j.memsci.2013.06.010
  24. N. Chikushi, E. Ohara, A. Hisama, and H. Nishide, "Porphyrin network polymers prepared via a click reaction and facilitated oxygen permeation through their membranes", Macromol. Rapid Commun., 35, 976 (2014). https://doi.org/10.1002/marc.201400038
  25. J. Sunarso, S. Liu, Y. S. Lin, and J. C. D. da Costa, "High performance BaBiScCo hollow fibre membranes for oxygen transport", Energy Environ. Sci., 4, 2516 (2011). https://doi.org/10.1039/c1ee01180d