DOI QR코드

DOI QR Code

Preparation and Characterization of Organic Solvent-resistant Polybenzimidazole Membranes

용매저항성 폴리벤즈이미다졸 분리막의 제조 및 특성평가

  • Jeong, Moon Ki (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 정문기 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2017.02.21
  • Accepted : 2017.04.07
  • Published : 2017.08.10

Abstract

Recently, solvent-resistant nanofiltration membranes have been studied for the separation of solvents or solutes using a molecular weight cut-off system of the polymer which is resistant to a specific solvent. Required conditions for these membranes must have are excellent physical properties and solvent resistance. Polybenzimidazole, which is known to be one of the most heat-resistant commercially available polymers, has an excellent inherent solvent resistance and it is even insoluble in stronger organic solvents when cross-linked. Therefore, in this study, the applicability of polybenzimidazole as a solvent resistant nanofiltration membrane was discussed. The membrane was fabricated using the non-solvent induced phase separation method and showed a suitable morphology as a nanofiltration membrane confirmed by field emission scanning electron microscopy. In addition, the permeance of the solvent in the presence or absence of cross-linking was investigated and the stability was also confirmed through long operation. The permeance test was carried out with five different solvents: water, ethanol, benzene, N, N-dimethylacetamide (DMAc) and n-methyl-2-pyrrolidone (NMP); each of the initial flux was $6500L/m^2h$ (water, 2 bar), $720L/m^2h$ (DMAc, 5 bar), $185L/m^2h$ (benzene, 5 bar), $132L/m^2h$ (NMP, 5 bar), $65L/m^2h$ (ethanol, 5 bar) and the pressure between 2 and 5 bar was applied depending on the type of membrane.

최근 특정 용매에 대한 저항성이 있고 특정 분획분자량을 가지는 고분자 분리막을 통해 용매 또는 용질의 분리가 이루어지는 용매저항성 나노여과막에 대한 연구가 많이 이루어지고 있다. 이러한 분리막의 필수조건은 우수한 물성과 용매저항성을 가지는 것인데 현존하는 상업용 고분자 중 가장 내열성이 좋다고 알려진 폴리벤즈이미다졸은 고유의 용매저항성 역시 뛰어나지만 가교되었을 때 강한 유기용매에도 녹지 않는 특성을 가진다. 따라서 본 연구에서는 이러한 폴리벤즈이미다졸의 용매저항성을 이용한 나노여과막의 적용 가능성에 대하여 논의하고자 하였다. 분리막의 제조는 비용매유도상전이법을 통해 실시하였고 전계방출형 주사전자현미경을 통해 나노여과막으로서 적절한 복합막을 형성하는 것을 확인하였다. 또한, 가교유무에 따른 용매의 투과성능을 확인하였고 장시간 운전을 통하여 용매에 대한 내구성에 따른 안정성 또한 확인하였다. 투과도 실험은 물, 에탄올, 벤젠, N, N-dimethylacetamide (DMAc), n-methyl-2-pyrrolidone (NMP) 다섯 가지 용매에 의해 실시되었으며 각각의 초기 플럭스는 $6500L/m^2h$ (Water, 2 bar), $720L/m^2h$ (DMAc, 5 bar), $185L/m^2h$ (Benzene, 5 bar), $132L/m^2h$ (NMP, 5 bar), $65L/m^2h$ (Ethanol, 5 bar)를 나타내었고 분리막의 종류에 따라 2-5 bar의 압력을 적용하였다.

Keywords

References

  1. E. W. Neuse, Aromatic Polybenzimidazoles. Syntheses, Properties, and Applications, 1-42, Springer Berlin Heidelberg, Germany (1982).
  2. K. Hwang, J. Kim, S. Kim, and H. Byun, Preparation of polybenzimidazole- based membranes and their potential applications in the fuel cell system, Energies, 7, 1721-1732 (2014). https://doi.org/10.3390/en7031721
  3. H. M. S. Iqbal, Performance Evaluation of Polybenzimidazole for Potential Aerospace Applications, 3-10, TU Delft, Delft University of Technology, Netherlands (2014).
  4. S. H. Kim, J. M. Ko, W. G. Kim, and J. H. Chung, Studies on the synthesis of copolymer by using tetraaminobiphenyl and cardo molecule, Appl. Chem. Eng., 11, 170-175 (2000).
  5. D. J. Kim and S. Y. Nam, Development trend of membrane filter using ceramic fibers, Membr. J., 26, 87-96 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.87
  6. S. H. Kook, S. J. Kim, J. W. Lee, M. H. Hwang, and I. S. Kim, Structure parameter change estimation of a forward osmosis membrane under pressurized conditions in pressure-assisted forward osmosis (PAFO), Membr. J., 26, 187-196 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.187
  7. M. F. Flanagan and I. C. Escobar, Novel charged and hydrophilized polybenzimidazole (PBI) membranes for forward osmosis, J. Membr. Sci., 434, 85-92 (2013). https://doi.org/10.1016/j.memsci.2013.01.039
  8. J. G. Kim, S. H. Lee, C. H. Ryu, and G. J. Hwang, Preparation of cation exchange membrane using polybenzimidazole and its characteristic, Membr. J., 22, 265-271 (2012).
  9. A. Livingston, L. Peeva, and P. Silva, Organic solvent nanofiltration. In: S.P. Nunes and K.-V. Peinemann (eds.), Membrane Technology in the Chemical Industry, pp. 203-228, Wiley-VCH, Weinheim, Germany (2006).
  10. M. F. J. Solomon, Y. Bhole, and A. G. Livingston, High flux membranes for organic solvent nanofiltration (OSN) -Interfacial polymerization with solvent activation, J. Membr. Sci., 423, 371-382 (2012).
  11. I. B. Valtcheva, S. C. Kumbharkar, J. F. Kim, Y. Bhole, and A. G. Livingston, Beyond polyimide: crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments, J. Membr. Sci., 457, 62-72 (2014). https://doi.org/10.1016/j.memsci.2013.12.069
  12. K. Vanherck, P. Vandezande, S. O. Aldea, and I. F. Vankelecom, Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents, J. Membr. Sci., 320, 468-476 (2008). https://doi.org/10.1016/j.memsci.2008.04.026
  13. H. N. Jang, S. J. Kim, Y. T. Lee, and K. H. Lee, Progress of nanofiltration hollow fiber membrane, Appl. Chem. Eng., 24, 456-470 (2013).
  14. D. Y. Oh and S. Y. Nam, Developmental trend of polyimide membranes for gas separation, Membr. J., 21, 307-320 (2011).
  15. M. Namvar-Mahboub and M. Pakizeh, Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified $SiO_2$ support for organic solvent nanofiltration, Sep. Purif. Technol., 119, 35-45 (2013). https://doi.org/10.1016/j.seppur.2013.09.003
  16. B. S. Cheon, S. I. Cheong, and J. W. Rhim, Pilot test with pervaporation separation of aqueous IPA using a composite PEI/PDMS membrane module, Membr. J., 25, 385-390 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.385
  17. N. Ghaemi, S. S. Madaeni, and A. Alizadeh, Fabrication and modification of polysulfone nanofiltration membrane using organic acids: morphology, characterization and performance in removal of xenobiotics, Sep. Purif. Technol., 96, 214-228 (2012). https://doi.org/10.1016/j.seppur.2012.06.008
  18. S. M. Woo, Y. S. Chung, and S. Y. Nam, Evaluation of morphology and water flux for polysulfone flat sheet membrane with conditions of coagulation bath and dope solution, Membr. J., 22, 258-264 (2012).
  19. K. Hendrix, G. Koeckelberghs, and I. F. Vankelecom, Study of phase inversion parameters for PEEK-based nanofiltration membranes, J. Membr. Sci., 452, 241-251 (2014). https://doi.org/10.1016/j.memsci.2013.10.048
  20. M. Sairam, X. Loh, and Y. Bhole, Spiral-wound polyaniline membrane modules for organic solvent nanofiltration (OSN), J. Membr. Sci., 349, 123-129 (2010). https://doi.org/10.1016/j.memsci.2009.11.039
  21. J. H. Park, D. J. Kim, and S. Y. Nam, Characterization and preparation of PEG-Polyimide copolymer asymmetric flat sheet membrane for carbon dioxide separation, Membr. J., 25, 547-557 (2016).
  22. S. M. Woo, J. J. Choi, and S. Y. Nam, Preparation of hydroxy polyimide membranes for gas separation by phase inversion method, Membr. J., 22, 62-71 (2012).
  23. I. Valtcheva, S. Kumbharkar, J. Kim, L. Peeva, and A. Livingston, Development of organic solvent nanofiltration membranes for the application in extreme pH conditions, Procedia Eng., 44, 313-315 (2012). https://doi.org/10.1016/j.proeng.2012.08.399
  24. D. Chen, S. Yu, H. Zhang, and X. Li, Solvent resistant nanofiltration membrane based on polybenzimidazole, Sep. Purif. Technol., 142, 299-306 (2015). https://doi.org/10.1016/j.seppur.2015.01.011
  25. N. W. Kim, Preparation of asymmetric membrane by addition of nonsolvent, Membr. J., 25, 32-41 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.32
  26. S. B. Yun and Y. T. Lee, Effect of addition of cosolvent $\gamma$-butyrolactone on morphology of polysulfone hollow fiber membranes, Appl. Chem. Eng., 25, 274-280 (2014). https://doi.org/10.14478/ace.2014.1026
  27. J. A. Joule and K. Mills, Heterocyclic Chemistry at a Glance, 461-483, John Wiley and Sons, Chichester, UK (2012).
  28. J. F. Kim, P. R. Gaffney, and I. B. Valtcheva, Organic solvent nanofiltration (OSN): A new technology platform for liquid-phase oligonucleotide synthesis (LPOS), Org. Process Res. Dev., 20, 1439-1452 (2016). https://doi.org/10.1021/acs.oprd.6b00139
  29. T. G. Ahn, Miscibility and specific intermolecular interaction strength of PBI/PI blends depending on polyimide structure, Appl. Chem. Eng., 9, 185-192 (1998).
  30. B. Y. Lee, P. Dahal, H. S. Kim, S. Y. Yoo, and Y. C. Kim, A study on the molecular weight control and rheological properties of branched polycarbonate, Appl. Chem. Eng., 23, 388-393 (2012).
  31. J. H. Lee, J. H. Kim, and Y. T. Lee, Characteristics of permeation and fouling of UF/MF hollow fiber membranes for drinking water treatment, Membr. J., 10, 75-82 (2000).
  32. J. S. Wang, B. J. Kim, and S. H. Choi, Technical feasibility for hollow-fiber ultrafiltration water treatment system and its economic aspects, Appl. Chem. Eng., 10, 12-18 (1999).

Cited by

  1. 고에너지 엑스선을 조사한 갑상선의 세포막모델에서 요오드이온의 선택적 투과성 전달 특성 vol.15, pp.2, 2021, https://doi.org/10.7742/jksr.2021.15.2.229