DOI QR코드

DOI QR Code

Effect of Force-field Types on the Proton Diffusivity Calculation in Molecular Dynamics (MD) Simulation

분자동역학 전산모사에서 force-field의 종류가 수소이온 확산도 계산에 미치는 영향

  • Lee, Ji Hyun (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH))
  • 이지현 (경남과학기술대학교(GNTECH) 에너지공학과) ;
  • 박치훈 (경남과학기술대학교(GNTECH) 에너지공학과)
  • Received : 2017.08.28
  • Accepted : 2017.08.31
  • Published : 2017.08.31

Abstract

The most important factor in the performances of polymer electrolyte membranes for fuel cells is how fast hydrogen ions can be transported along the water channel formed inside the electrolyte membrane. Since the morphology of the water channel and the diffusivity of the protons are very important factors for the proton transport behavior, various molecular dynamics simulation studies are being carried out to clarify this. The force-field is an important variable parameterizing the movement and interaction of each atom in molecular dynamics simulation. In this study, proton diffusivities of the 3D models of polymer electrolyte membranes were calculated in order to analyze the effects of various types of force-fields on the molecular simulation. It has been found that the charge value determining the non-bonding interaction plays a very important role in the formation of the water channel morphology, and the COMPASS force-field can calculate the accurate proton diffusion behavior. Accordingly, for molecular dynamics simulation of polymer electrolyte membranes, the proper selection of the force-field is very important due to its great effect on the proton diffusion as well as the final molecular structure.

연료전지용 전해질막의 성능에 있어서 가장 중요한 요소는 수소이온이 전해질막 내부에 형성된 수화채널을 따라서 얼마나 빨리 전달될 수 있느냐이다. 여기에는 수화채널의 모폴로지 및 수소이온의 확산도 등이 매우 중요한 요소가 되는데, 이를 규명하기 위하여 다양한 분자동역학 전산모사 연구가 진행되고 있다. 분자동역학 계산에 있어서 각 원자의 움직임 및 상호작용을 미리 변수화 시켜 놓은 force-field는 필수 요소 중 하나로서, 본 연구에서는 이러한 force-field의 종류가 전해질막 전산모사에 미치는 영향을 분석하기 위하여, 다양한 force-field를 이용하여 연료전지용 전해질막의 수소이온 확산도를 계산하였다. 이 과정에서 non-bonding interaction을 결정하는 전하 값이 수화채널 모폴로지 형성에 매우 중요한 역할을 한다는 것이 밝혀졌으며, COMPASS force-field가 가장 정확한 수소이온 확산도 값을 얻음으로써 연료전지용 전해질막의 전산모사에 있어서 가장 적절한 force-field일 것으로 판단된다. 이러한 force-field의 적절한 선정은 최종 분자 구조 뿐만 아니라 수소이온 확산도에도 큰 영향을 주는 것을 알 수 있었으며, 연료전지용 전해질막 전산모사 수행 시에는 이러한 부분을 충분히 감안하여 force-field를 선택하여야 할 것이다.

Keywords

References

  1. J. Larminie and A. Dicks, "Fuel Cell Systems Explained", Wiley, West Sussex (2003).
  2. B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414, 345 (2001). https://doi.org/10.1038/35104620
  3. C. S. Lee, H. S. Shin, J. H. Jun, S. Y. Jung, and J. W. Rhim, "Recent Development Trends of Cation Exchange Membrane Materials", Membr. J., 12, 1 (2002).
  4. H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyethersulfone membrane for PEMFC", Membr. J., 20, 40 (2010).
  5. C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.329
  6. J. Ahn and C. H. Lee, "Preparation and characterization of sulfonated poly(arylene ether sulfone) random copolymer reinforced membranes for fuel cells", Membr. J., 26, 146 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.146
  7. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  8. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium- temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  9. C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480 (2016). https://doi.org/10.1038/nature17634
  10. Y. S. Kim, B. Einsla, M. Sankir, W. Harrison, and B. S. Pivovar, "Structure-property-performance relationships of sulfonated poly(arylene ether sulfone) s as a polymer electrolyte for fuel cell applications", Polymer, 47, 4026 (2006). https://doi.org/10.1016/j.polymer.2006.02.032
  11. N. Takimoto, L. Wu, A. Ohira, Y. Takeoka, and M. Rikukawa, "Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: Relationship between morphology and proton conduction", Polymer, 50, 534 (2009). https://doi.org/10.1016/j.polymer.2008.11.029
  12. J. C. Jansen, M. MacChione, E. Tocci, L. De Lorenzo, Y. P. Yampolskii, O. Sanfirova, V. P. Shantarovich, D. Hofmann, and E. Drioli, "Comparative study of different probing techniques for the analysis of the free volume distribution in amorphous glassy perfluoropolymers", Macromolecules, 42, 7589 (2009). https://doi.org/10.1021/ma901244d
  13. J. M. Haile, "Molecular Dynamics Simulation", Wiley, New York (1992).
  14. H. Sun, "COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds", J. Phys. Chem. B, 102, 7338 (1998). https://doi.org/10.1021/jp980939v
  15. J. Yang, Y. Ren, A. Tian, and H. Sun, "COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, $H_2$, $O_2$, $N_2$ NO, CO, $CO_2$, $NO_2$, $CS_2$, and $SO_2$, in liquid phases", J. Phys. Chem. B, 104, 4951 (2000). https://doi.org/10.1021/jp992913p
  16. H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 1 (2016). https://doi.org/10.1007/s00894-015-2876-x
  17. "Material studio online help", Accelrys Software Inc., San Diego (2013).
  18. J. R. Hill and J. Sauer, "Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica", J. Phys. Chem., 98, 1238 (1994). https://doi.org/10.1021/j100055a032
  19. H. Sun, "Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters", J. Comput. Chem., 15, 752 (1994). https://doi.org/10.1002/jcc.540150708
  20. H. Sun, "Ab initio calculations and force field development for computer simulation of polysilanes", Macromolecules, 28, 701 (1995). https://doi.org/10.1021/ma00107a006
  21. H. Sun, S. J. Mumby, J. R. Maple, and A. T. Hagler, "An ab initio CFF93 all-atom force field for polycarbonates", J. Am. Chem. Soc., 116, 2978 (1994). https://doi.org/10.1021/ja00086a030
  22. C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.341
  23. C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010). https://doi.org/10.1021/jp105708m
  24. C. H. Park, E. Tocci, E. Fontananova, M. A. Bahattab, S. A. Aljlil, and E. Drioli, "Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: Mesoscale simulation and experimental approach for optimizing dispersion", J. Membr. Sci., 514, 195 (2016). https://doi.org/10.1016/j.memsci.2016.04.011
  25. C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and E. Drioli, "A simulation study on OH-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): Relationship between gas transport properties and free volume morphology", J. Phys. Chem. B, 118, 2746 (2014). https://doi.org/10.1021/jp411612g
  26. C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864 (2012). https://doi.org/10.1021/jp307365y
  27. D. Rigby, H. Sun, and B. Eichinger, "Computer simulations of poly (ethylene oxide): Force field, pvt diagram and cyclization behaviour", Polym. Int., 44, 311 (1997). https://doi.org/10.1002/(SICI)1097-0126(199711)44:3<311::AID-PI880>3.0.CO;2-H
  28. H. Sun, P. Ren, and J. Fried, "The COMPASS force field: Parameterization and validation for phosphazenes", Comput. Theor. Polym. Sci., 8, 229 (1998). https://doi.org/10.1016/S1089-3156(98)00042-7
  29. P. Dauber‐Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest, and A. T. Hagler, "Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase trimethoprim, a drug‐receptor system", Proteins Struct. Funct. Bioinf., 4, 31 (1988). https://doi.org/10.1002/prot.340040106
  30. A. Hagler, P. Stern, R. Sharon, J. Becker, and F. Naider, "Computer simulation of the conformational properties of oligopeptides. Comparison of theoretical methods and analysis of experimental results", J. Am. Chem. Soc., 101, 6842 (1979). https://doi.org/10.1021/ja00517a009
  31. A. T. Hagler, P. Dauber, and S. Lifson, "Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 3. The C:O. cntdot..cntdot..cntdot.H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids", J. Am. Chem. Soc., 101, 5131 (1979). https://doi.org/10.1021/ja00512a003
  32. C. Casewit, K. Colwell, and A. Rappe, "Application of a universal force field to organic molecules", J. Am. Chem. Soc., 114, 10035 (1992). https://doi.org/10.1021/ja00051a041
  33. C. Casewit, K. Colwell, and A. Rappe, "Application of a universal force field to main group compounds", J. Am. Chem. Soc., 114, 10046 (1992). https://doi.org/10.1021/ja00051a042
  34. A. K. Rappé, C. J. Casewit, K. Colwell, W. Goddard Iii, and W. Skiff, "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations", J. Am. Chem. Soc., 114, 10024 (1992). https://doi.org/10.1021/ja00051a040
  35. A. Rappe, K. Colwell, and C. Casewit, "Application of a universal force field to metal complexes", Inorg. Chem., 32, 3438 (1993). https://doi.org/10.1021/ic00068a012
  36. S. L. Mayo, B. D. Olafson, and W. A. Goddard, "DREIDING: A generic force field for molecular simulations", J. Phys. Chem., 94, 8897 (1990). https://doi.org/10.1021/j100389a010
  37. A. Venkatnathan, R. Devanathan, and M. Dupuis, "Atomistic simulations of hydrated nafion and temperature effects on hydronium ion mobility", J. Phys. Chem. B, 111, 7234 (2007). https://doi.org/10.1021/jp0700276
  38. S. S. Jang, V. Molinero, T. Çaǧin, and W. A. Goddard Iii, "Nanophase-segregation and transport in nafion 117 from molecular dynamics simulations: Effect of monomeric sequence", J. Phys. Chem. B, 108, 3149 (2004). https://doi.org/10.1021/jp036842c