DOI QR코드

DOI QR Code

The preliminary study of developing computational thinking practice analysis tool and its implementation

컴퓨팅 사고 실천 분석도구 개발 및 이의 활용에 대한 기초연구

  • Received : 2017.06.20
  • Accepted : 2017.08.20
  • Published : 2017.08.31

Abstract

The purpose of this study was to develop computational thinking (CT) analysis tool that can be used to analyze CT practices; first, by defining what CT practices are, and then, by identifying which components of CT are reflected in STEAM classes. Exploring various kinds of CT practices, which can be identified while applying the proposed CT analysis tool for exemplary STEAM classes, is another goal of this study. Firstly, to answer the question of "What is CT in science education" and thereby to develop the proposed CT practice analysis tool, three types of published documents about CT definition as the main data in this study have been considered. In the first "analysis tool development" part of this study, the following five elements have been identified as the main components of CT analysis tool as follows; (1) connecting open problems with computing, (2) using tools or computers to develop computing artifact, (3) abstraction process, (4) analyzing and evaluating computing process and artifact, and (5) communicating and cooperating. Based on the understandings that there is a consistent flow among the five components due to their interactions, a flow chart of CT practice has also been developed. In the second part of this study, which is an implementation study, the proposed CT practice analysis tool has been applied in one exemplary STEAM program. To select the candidate STEAM program, four selection criteria have been identified. Then, the proposed CT practice analysis tool has been applied for the selected STEAM program to determine the degree of CT practice reflected in the program and furthermore, to suggest a way of improving the proposed CT analysis tool if it shows some weak points. Through the findings of this study, we suggest that the actual definition of computational thinking will be helpful to converge Technology and Engineering to STEAM education and a strong complement to reinforce STEAM education.

본 연구의 목적은 컴퓨팅 사고(Computational Thinking, 이하 CT)의 실천을 분석하는데 사용할 컴퓨팅 사고 실천 분석 도구(Computational Thinking_STEAM_Analyzing Tool, 이하 CT_STEAM_AT)를 개발하는 것이다. 먼저, STEAM 프로그램에 반영되어 나타나는 CT의 실천이 무엇인지에 대해 조작적 정의를 내리고, 이를 바탕으로 CT가 STEAM 수업에서는 어떠한 특징으로 나타나는지를 파악하여 CT실천을 관찰할 수 있는 CT_STEAM_AT를 개발하는 것이다. 또한, 이를 바탕으로 모범적인 STEAM 수업을 분석하였을 때 얼마나 다양한 CT실천이 포함되어 있는지를 탐색하는 것이 연구의 목적이라 할 수 있겠다. 먼저, CT_STEAM_AT 개발연구에서는 '과학교육에서의 CT란 무엇인가?'라는 질문을 시작으로 CT의 실천 구성요소에 대해 정의하기 위해 3가지의 중요한 자료를 주요 연구자료로 이용하고 분석하여 CT_STEAM_AT를 개발하였다. 첫 번째 개발연구에서는 CT_STEAM_AT의 CT의 실천 구성요소를 크게 5가지로 구분하였다. (1) 현실문제와 컴퓨팅 연결하기, (2) 컴퓨팅 산출물(artifact)을 개발하기 위한 도구나 컴퓨터 사용하기, (3) 추상화 과정, (4) 컴퓨팅 실천과정 및 산출물을 분석하고 평가하기, 그리고 (5) 의사소통하고 협력하기이다. 또한, 연구를 진행하던 중 CT의 구성요소들 사이의 상호작용으로 인하여 일정한 흐름이 존재한다고 해석하여 CT실천 흐름도를 개발하였다. 두 번째 CT 적용연구에서는 CT_STEAM_AT를 모범적인 STEAM 프로그램에 적용하였다. 먼저, 모범적인 STEAM 프로그램을 선정하기 위해서 4가지의 선정조건을 고려하여 선정하였다. 이런 과정을 통해 선정된 STEAM 프로그램에 CT_STEAM_AT를 적용시켜 CT가 반영된 정도를 파악하고, 더 나아가 부족하거나 제한적으로 나타난 CT의 실천 부분을 보완할 수 있는 방안을 제안해보았다. 본 연구의 결과, 개발된 CT_STEAM_AT를 통해 STEAM 프로그램에 반영된 CT 종류 및 수준을 파악하는데 효율적임을 알 수 있었고, 기술과 공학 부분을 보충하고, 실제적으로 나타나는 CT의 실천을 정의함으로 인해 STEAM 교육의 활성화를 기대할 수 있을 것이다.

Keywords

References

  1. 교육부(2015a). 실과(기술.가정)/정보과 교육과정. 제2015-74호.
  2. 교육부(2015b). 소프트웨어 운영지침.
  3. 김덕호, 고동국, 한명재, 홍승호 (2014). STEAM 프로그램을 적용한 과학수업이 초등학생의 창의성과 과학교과 흥미도에 미치는 영향. 한국과학교육학회, 34(1), 43-54. https://doi.org/10.14697/JKASE.2014.34.1.1.00043
  4. 김홍정, 임성민, 조향숙, 홍옥수(2013). 융합인재교육(STEAM) 실시에 따른 과학에 대한 흥미와 자기 주도적 학습능력의 변화 분석. 학습자중심교과교육연구, 13(3), 269-289.
  5. 노희진, 이상미, 박인숙, 전현자(2014). 초.중등 컴퓨팅 사고력 교수.학습자료 개발 연구(중등과학). 한국과학창의재단 연구보고서 BD15070001.
  6. 박영신, 맹승호, 정원영, 김원강, 김유신, 박기만, 홍철훈, 문병권, 강성승, 박정우, 강문수(2012). 2012년 융합인재교육(STEAM) 프로그램 개발 최종보고서. 한국과학창의재단.
  7. 박정미, 강오한(2013). 스크래치를 활용한 STEAM교육이 초등 정보영재의 논리적 사고력에 미치는 영향. 한국컴퓨터교육학회, 17(2), 187-190.
  8. 오경선, 안성진(2013). 창의력 향상을 우한 정보과학적 사고기반의 문제해결 과정 모형 탐색. 한국컴퓨터교육학회, 17(1), 183-186.
  9. 우정주(2012). STEAM 교육에 대한 고등학교 교사의 인식과 관련한 질적 연구. 이화여자대학교 석사학위논문.
  10. 유중현, 김종혜(2008). 문제 해결과정에서의 정보과학적 사고 능력에 대한 개념적 고찰. 정보창의 교육, 2(2), 15-24.
  11. 이광우, 최유현, 신종호(2009). 핵심역량 기반 초.중등학교 교육과정 설계 방안 탐색을 위한 세미나 : 미래 한국인의 핵심역량 증진을 위한 초. 중등학교 교육과정을 어떻게 설계할 것인가?. 한국교육과정평가원 연구자료 ORM 2009-20.
  12. 이상균(2015). 스마트 기기 활용 설계 기반 STEAM 프로그램이 과학 흥미도와 융합인재소양에 미치는 효과. 대한지구과학교육학회, 8(3), 240-250. https://doi.org/10.15523/JKSESE.2015.8.3.240
  13. 이성희, 박순흥, 이정미, 김수앙(2014). 초.중등 컴퓨팅 사고력 교수.학습자료 개발 연구(초등과학). 한국과학창의재단 연구보고서 BD15070001.
  14. 이영준, 백성혜, 시재홍, 유헌창, 정인기, 안상진, 최정원, 전성균(2016). 초.중등 단계 Computational Thinking 도입을 위한 기초 연구. 한국창의재단 보고서.
  15. 이은경(2012). 계산적 사고(Computational Thinking) 능력 향상을 위한 STEAM 교육 방안. 한국컴퓨터교육학회, 16(1), 47-51.
  16. 이철현(2015). 초등 SW 교육 방향 탐색 및 모델 개발, 한국실과교육학회, 28(4), 207-222.
  17. 임청환, 오보정(2015). 융합인재교육에 대한 초등예비교사와 현직교사의 인식과 요구. 대한지구과학교육학회, 8(1), 1-11. https://doi.org/10.15523/JKSESE.2015.8.1.1
  18. 정지예, 위수민, 임성만(2015). 과학 동아리 활동과 연계된 STEAM 활동이 학생들의 자기효능감과 과학에 대한 태도에 미치는 영향. 대한지구과학교육학회, 8(2), 183-192. https://doi.org/10.15523/JKSESE.2015.8.2.183
  19. 최숙영(2011). 21st Century Skills와 Computational Thinking 관점에서의 '정보' 교육과정 분석. 한국컴퓨터교육학회, 14(6), 19-30.
  20. 최정원, 이은경, 김경훈, 이영준(2015). 2015 개정정보 교과 교육과정에서 학습자의 컴퓨팅 사고력 평가 방안에 대한 제언. 한국컴퓨터교육학회, 19(2), 9-12.
  21. 최형신(2014). Computaiontal Thinking 역량 개발을 위한 수업 설계 및 평가 루브릭 개발. 한국정보교육학회, 18(1), 57-64.
  22. 한국과학창의재단(2013). 2013 과학창의 연례컨퍼런스 -computational thinking 국제세미나. 서울.
  23. 홍광표, 조준오(2015). 융합인재교육(STEAM)이 초등학생 고학년의 과학적 태도 및 창의적 문제해결력에 미치는 영향. 한국교육문제연구, 33(1), 77-99.
  24. Erickson, F.(2011). Qualitative Research Methods for Science Education, Chapter 93 in Second International Handbook of Science Education, 24, pp 1451-1469.
  25. Foster I.(2006). 2020 computing: a two-way street to science's future. Nature 440(7083):419 https://doi.org/10.1038/440419a
  26. Hwang, J-K., & Park, Y-S.(2016, January). The Development of Computational Thinking Analysis Tool and Exploration of STEAM program to reflect Computational Thinking. Paper presented at the biannual meeting of Korean Society of Earth Science Education, January 30, Jeonju National University of Education, Jeonju, Korea.
  27. International Society Technology in Education & Computer Science Teachers Association (2011). Operational.
  28. National Research Council.(2009). Report of a Workshop on The Scope and Nature of Computational Thinking.
  29. National Research Council.(2010). Report of a Workshop on The Scope and Nature of Computational Thinking.
  30. National Research Council.(2011a) Learning science through computer games and simulations. The National Academies Press, Washington, DC
  31. National Research Council.(2011b) Report of a workshop of pedagogical aspects of computational thinking. The National Academies Press, Washington, DC
  32. National Research Council.(2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academy of sciences.
  33. NGSS Lead States.(2013) Next generation science standards: for states, by states. The National Academies Press, Washington, DC
  34. OECD (2003). Definition and selection of competencies: Theoretical and conceptual, 134-foundation(DeSeCo). OECD Press.
  35. Park, Y-S., Jeong, D-H., Yu, J-Y., & Larry Flick.(2015a, April). Application of Computational Thinking for activating STEAM education. Paper presented at the biannual meeting of Korean Earth Science Society, April 23-24, Chuncheon National University of Education, Chuncheon, Korea.
  36. Park, Y-S., Hwang, J-K., & Lawrence B. Flick.(2015b, September). The Analysis of Computational Thinking in STEAM program about Climate Change and Water Shortage and Suggestions in Science Education. Paper presented at the biannual meeting of Korean Earth Science Society, September 10-11, Chonbuk National University, Jeonju, Korea.
  37. Park, Y-S., & Lawrence Flick.(2015, October). The Development of Computational Thinking Practice Observational Protocol and Its Application Into STEAM Program. EASE (East-Asian Association for Science Education) Conference 2015, October 16-18, Beijing Normal China, Beijing, China.
  38. Rychen, D. S., & Salganik, L. H.(2003). Key Competencies for a Successful Life and a Well-Functioning Society. Cambridge: Hogrefe & Huber Publishers.
  39. Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Computational thinking in high school science classroom. The Science Teacher, 81(5), 53-60.
  40. The College Board.(2013). Advanced Placement Computer Science Principles Draft Curriculum Framework.(http://media.collegeboard.com/digitalServices/pdf/ap/2013-0607-comp-sci-principles-cffinal.pdf)
  41. Weintrop, D., Beheshti, E., Horn, M., & Orton, K. (2015). Defining computational thinking for mathematics and science classroom. Journal of Science Education and Technology, DOI 10.1007/s10956-015-9581-5
  42. Wing, J. M.(2006). Computational Thinking Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  43. Wing, J. M.(2008). Computational thinking and thinking about computing. Philosophical transactions of the Royal Society, 366, 3717-3725. https://doi.org/10.1098/rsta.2008.0118