DOI QR코드

DOI QR Code

Development of Forest Volume Estimation Model Using Airborne LiDAR Data - A Case Study of Mixed Forest in Aedang-ri, Chunyang-myeon, Bonghwa-gun -

항공 LiDAR 자료를 이용한 산림재적추정 모델 개발 - 봉화군 춘양면 애당리 혼효림을 대상으로 -

  • CHO, Seung-Wan (School of Forest Science and Landscape Architecture, Kyungpook National University) ;
  • KIM, Yong-Ku (Department of Statistics, Kyungpook National University) ;
  • PARK, Joo-Won (School of Forest Science and Landscape Architecture, Kyungpook National University)
  • 조승완 (경북대학교 산림과학.조경학부) ;
  • 김용구 (경북대학교 통계학과) ;
  • 박주원 (경북대학교 산림과학.조경학부)
  • Received : 2017.09.19
  • Accepted : 2017.09.27
  • Published : 2017.09.30

Abstract

This study aims to develop a regression model for forest volume estimation using field-collected forest inventory information and airborne LiDAR data. The response variable of the model is forest stem volume, was measured by random sampling from each individual plot of the 30 circular sample plots collected in Bonghwa-gun, Gyeong sangbuk-do, while the predictor variables for the model are Height Percentiles(HP) and Height Bin(HB), which are metrics extracted from raw LiDAR data. In order to find the most appropriate model, the candidate models are constructed from simple linear regression, quadratic polynomial regression and multiple regression analysis and the cross-validation tests were conducted for verification purposes. As a result, $R^2$ of the multiple regression models of $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}$ among the estimated models was the highest at 0.509, and the PRESS statistic of the simple linear regression model of $HP_{25}$ was the lowest at 122.352. $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}-based$ models, thus, are comparatively considered more appropriate for Korean forests with complicated vertical structures.

본 연구의 목적은 산림재적 현장자료와 항공 LiDAR 자료 기반의 산림재적 추정을 위한 회귀모델의 개발이다. 추정 모델은 경상북도 봉화군 지역에서 임의추출법에 의해 선정된 30개의 원형 표본지로부터 산출한 표본지별 산림재적을 반응변수로 하고, 항공 LiDAR 원자료로부터 개별 표본지의 고도분포 백분위수(Height Percentiles, HP) 및 층위 단위 점 개체수 백분율(Height Bin, HB)을 추출하여 예측변수로 사용하여 구성하였다. 단순선형회귀분석, 이차 다항회귀분석 및 단계적 회귀분석 방법을 이용한 다중회귀분석을 실시하여 적합모델들의 후보들을 도출하였으며, 검증을 위하여 각 모델별로 교차 타당성 검증을 실시하여 PRESS 통계치를 구하였다. 모델의 $R^2$ 및 PRESS을 비교하여 적합성을 검토한 결과, $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, $HBgt_{25}$의 다중회귀모델의 $R^2$이 0.509로 가장 높고, $HP_{25}$ 단순회귀모델의 PRESS 값이 122.352으로 가장 낮은 것으로 나타났다. 수직구조가 복잡한 우리나라 산림재적을 추정하는 모델로는 다양한 수직적 정보를 포함하고 있는 $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, $HBgt_{25}$이 상대적으로 보다 적합하다고 사료된다.

Keywords

References

  1. Akaike, H. 1974. A new look at the statistical model identification. IEEE transactions on automatic control 19(6):716-723. https://doi.org/10.1109/TAC.1974.1100705
  2. Allen, D.M. 1974. The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16(1):125-127. https://doi.org/10.1080/00401706.1974.10489157
  3. Allouis, T., S. Durrieu, C. Vega, and P. Couteron. 2013. Stem volume and above-ground biomass estimation of individual pine trees from LiDAR data: contribution of full-waveform signals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6(2): 924-934. https://doi.org/10.1109/JSTARS.2012.2211863
  4. Chang, A.J. and H.T. Kim. 2008. Study of biomass estimation in forest by aerial photograph and LiDAR data. Journal of the Korean Association of Geographic Information Studies 11(3):166-173 (장안진, 김형태. 2008. 항공사진과 Lidar 데이터를이용한 산림지역의 바이오매스 추정에 관한 연구. 한국지리정보학회지 11(3):166-173).
  5. Chang, A.J., K.Y. Yu, Y.I. Kim, and B.K. Lee. Estimation of individual tree and tree height using color aerial photograph and LiDAR data. Korean Journal of Remote Sensing 22(6):543-551 (장안진, 유기윤, 김용일, 이병길. 2006. 컬러항공사진과LiDAR 데이터를 이용한 수목 개체 및 수고추정. 대한원격탐사학회지 22(6):543-551). https://doi.org/10.7780/kjrs.2006.22.6.543
  6. Climate Analytic. 2017. Available at: http://climateanalytics.org/hot-topics/ratification-tracker.html (Accessed June 1, 2017).
  7. Holmgren, J. 2004. Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scandinavian Journal of Forest Research 19(6):543-553. https://doi.org/10.1080/02827580410019472
  8. Hyyppa, J., H. Hyyppa, P. Litkey, X. Yu, H. Haggren, P. Ronnholm, U. Pyysalo, J. Pitkanen, and M. Maltamo. 2004. Algorithms and methods of airborne laser scanning for forest measurements. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(8):82-89.
  9. Kim, K.M., J.B. Lee, E.S. Kim, H.J. Park, Y.H. Roh, S.H. Lee, K.H. Park, and H.S. Shin. Overview of research trends in estimation of forest carbon stocks based on remote sensing and GIS. Journal of the Korean Association of Geographic Information Studies 14(3):236-256 (김경민, 이정빈, 김은숙, 박현주, 노영희, 이승호,박기호, 신휴석. 2011. 원격탐사와 GIS 기반의 산림탄소저장량 추정에 관한 주요국 연구동향 개관. 한국지리정보학회지 14(3):2 36-256). https://doi.org/10.11108/kagis.2011.14.3.236
  10. Korea Forest Service. 2013. Table of tree volume/mass and forest stand yield. pp.7-97 (산림청. 2013. 임목재적.바이오매스 및 임분 수확표. 7-97쪽).
  11. Korea Forest Service. 2016a. Forest carbon market review. pp.1-21 (산림청. 2016. 산림탄소뉴스. 1-21쪽).
  12. Korea Forest Service. 2016b. Statistical yearbook of forestry. p.39 (산림청. 2016. 임업통계연보. 39쪽).
  13. Kwak, D.A., W.K. Lee and M.H. Kim, 2005. Application of LiDAR for measuring individual trees and forest stands. Journal of Korean Forestry Society 94(6):431-440 (곽두안, 이우균, 손민호. 2005. 개체목및 임분조사를 위한 LiDAR 응용에 관한 연구. 한국임학회지 94(6):431-440).
  14. Laurin, G.V., Q. Chen, J.A. Lindsell, D.A. Coomes, F. Del Frate, L. Guerriero, F. Pirotti, and R. Valentini. 2014. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. SPRS Journal of Photogrammetry and Remote Sensing 89:49-58. https://doi.org/10.1016/j.isprsjprs.2014.01.001
  15. Lee, D.G., J.E. Ryu, E.Y. Kim, and S.W. Jeon. 2008. Analysis of forest structure using LiDAR data-a case study of forest in Namchon-Dong, Osan. Journal of Environmental Impact Assessment (이동근, 류지은, 김은영, 전성우. 2008. LiDAR 데이터를 이용한 산림구조 분석. 한국환경영향평가학회지 17(5):279-288).
  16. Lim, K.S. and P.M. Treitz. 2004. Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scandinavian Journal of Forest Research 19(6):558-570. https://doi.org/10.1080/02827580410019490
  17. McRoberts, R.E., E. Næsset, and T. Gobakken. 2013. Inference for lidarassisted estimation of forest growing stock volume. Remote Sensing of Environment 128:268-275. https://doi.org/10.1016/j.rse.2012.10.007
  18. McRoberts, R.E. and E.O. Tomppo. 2007. Remote sensing support for national forest inventories. Remote Sensing of Environment 110(4):412-419. https://doi.org/10.1016/j.rse.2006.09.034
  19. Montgomery, D.C., E.A. Peck, and G.G. Vining. 2012. Introduction to linear regression analysis, 4rd edition. John Wiley &Sons, New York, USA. pp.261-300.
  20. Park, J.W., H.T. Choi, and S.W. Cho. A study on the effects of airborne LiDAR data-based DEM-generating techniques on the quality of the final products for forest areas-focusing on GroundFilter and GridsurfaceCreate in FUSION Software-. Journal of the Korean Association of Geographic Information Studies 19(1): 154-166 (박주원, 최형태, 조승완. 2016. 항공 LiDAR 자료기반 DEM 생성기법의 산림지역 최종산출물 품질에 미치는 영향에 관한연구-FUSION Software의 GroundFilter 및GridsurfaceCreate 알고리즘을 중심으로. 한국지리정보학회지 19(1):154-166). https://doi.org/10.11108/kagis.2016.19.1.154
  21. Seok, H.D. and B.S. Yoon. 2010. Understanding of the UNFCCC REDD+ mechanism and prospect of REDD+ negotiations. Korea Rural Economic Institute Policy. Research Report. pp.1-3 (석현덕, 윤범석. 2010. 기후변화협약 REDD+ 메커니즘의 이해와 향후 협상전망. 한국농촌경제연구원. 정책연구보고서. 1-3쪽).
  22. Sheridan, R.D., S.C. Popescu, D. Gatziolis, C.L. Morgan, and N.W. Ku. 2014. Modeling forest aboveground biomass and volume using airborne LiDAR metrics and forest inventory and analysis data in the Pacific Northwest. Remote Sensing 7(1):229-255. https://doi.org/10.3390/rs70100229
  23. Sheskin, D.J. 2011. Handbook of parametric and nonparametric statistical procedures. CRC Press, USA. pp.1-1926.
  24. Van Aardt, J.A., R.H. Wynne, and J.A. Scrivani. 2008. Lidar-based mapping of forest volume and biomass by taxonomic group using structurally homogenous segments. Photogrammetric Engineering & Remote Sensing 74(8):1033-1044. https://doi.org/10.14358/PERS.74.8.1033
  25. Woo, C.S., J.S. Yoon, J.I. Shin, and K.S. Lee. 2007. Automatic extraction of individual tree height in mountainous forest using airborne Lidar data. Journal of Korean Forestry Society 96(3):251-258. (우충식, 윤정숙, 신정일, 이규성. 2007. 항공Lidar 데이터를 이용한 산림지역의 개체목 자동 인식 및 수고 추출. 한국임학회지 96(3):251-258).

Cited by

  1. 지상라이다를 활용한 소나무 산불피해지의 임목 피해특성 분석 vol.36, pp.6, 2017, https://doi.org/10.7780/kjrs.2020.36.6.1.2