DOI QR코드

DOI QR Code

Molecular markers based on chloroplast and nuclear ribosomal DNA regions which distinguish Korean-specific ecotypes of the medicinal plant Cudrania tricuspidata Bureau

  • Lee, Soo Jin (Department of Agronomy & Medicinal Plant Resources, Gyeongnam National University of Science & Technology) ;
  • Shin, Yong-Wook (Department of Agronomy & Medicinal Plant Resources, Gyeongnam National University of Science & Technology) ;
  • Kim, Yun-Hee (Department of Biology Education, College of Education, IALS, Gyeongsang National University) ;
  • Lee, Shin-Woo (Department of Agronomy & Medicinal Plant Resources, Gyeongnam National University of Science & Technology)
  • Received : 2017.08.28
  • Accepted : 2017.09.20
  • Published : 2017.09.30

Abstract

Cudrania tricuspidata Bureau is a widely-used, medicinal, perennial and woody plant. Obtaining information about the genetic diversity of plant populations is highly important with regard toconservation and germplasm utilization. Although C. tricuspidata is an important medicinal plant species registered in South Korea, no molecular markers are currently available to distinguish Korean-specific ecotypes from other ecotypes from different countries. In this study, we developed single nucleotide polymorphism (SNP) markers derived from the chloroplast and nuclear genomic sequences, which serve to to identify distinct Korean-specific ecotypes of C. tricuspidata via amplification refractory mutation system (ARMS)-PCR and high resolution melting (HRM) curve analyses. We performed molecular authentication of twelve C. tricuspidata ecotypes from different regions using DNA sequences in the maturaseK (MatK) chloroplast intergenic region and nuclear ribosomal DNA internal transcribed spacer (ITS) regions. The SNP markers developed in this study are useful for rapidly identifying specific C. tricuspidata ecotypes from different regions.

Keywords

References

  1. Chagne D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EH, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353-358 https://doi.org/10.1016/j.ygeno.2008.07.008
  2. Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT (2003) Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem 49:396-406 https://doi.org/10.1373/49.3.396
  3. Han EH, Cho KM, Goo YM, Kim MB, Shin YW, Kim YH, Lee SW (2016) Development of molecular markers, based on chloroplast and ribosomal DNA regions, to discriminate three popular medicinal plant species, Cynanchum wilfordii, Cynanchum auriculatum, and Polygonum multiflorum. Mol Biol Rep 43:323-332 https://doi.org/10.1007/s11033-016-3959-1
  4. Hano Y, Matsumoto Y, Sun JY, Nomura T (1990) Structures of three new isoprenylated xanthones, cudraxanthones E, F and G. Planta Med 56:478-481 https://doi.org/10.1055/s-2006-961016
  5. Jung J, Kim KH, Yang K, Bang KH, Yang TJ (2014) Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products. J Ginseng Res 38:123-129 https://doi.org/10.1016/j.jgr.2013.11.017
  6. Kim MK, Wang H, Kim YJ, Sathiyamoorthy S, Kwon WS, Yang DC (2013) Molecular authentication by multiplex-PCR of three similar medicinal plant species: Cynanchum wilfordii, Cynanchum auriculatum and Polygonum multiflorum (Fallopia multiflorum). J Med Plant Res 35:2854-2589
  7. Lehmensiek A, Sutherland MW, McNamara RB (2008) The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet 117:721-728 https://doi.org/10.1007/s00122-008-0813-4
  8. Liu J, Huang S, Sun M, Liu S, Liu Y, Wang W, Zhang X, Wang H, Hua W (2012) An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Meth 8:34 https://doi.org/10.1186/1746-4811-8-34
  9. Mackay JF, Wright CD, Bonfiglioli RG (2008) A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Meth 4:8 https://doi.org/10.1186/1746-4811-4-8
  10. Newton CR, Graham A, Heptinstall LE (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucl Acids Res 17:2503-2516 https://doi.org/10.1093/nar/17.7.2503
  11. Park KH (2005) Antioxidant and cytotoxic activities of xanthones from Cudrania tricuspidata. Bioorg Med Chem Lett 15:5548-5552 https://doi.org/10.1016/j.bmcl.2005.08.099
  12. Park KH, Park YD, Han JM, Im KR, Lee BW, Jeong IY (2006) Antiatheroclerotic and anti-inflammatory activities of catecholic xanthones and flavonoids isolated from Cudrania tricuspidata. Bioorg Med Chem Lett 16:5580-5583 https://doi.org/10.1016/j.bmcl.2006.08.032
  13. Pyke KA (1999) Plastid division and development. Plant Cell 11:549-556 https://doi.org/10.1105/tpc.11.4.549
  14. Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132-140 https://doi.org/10.1038/hdy.1994.19
  15. Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154-160 https://doi.org/10.1006/abio.1996.9916
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725-2729 https://doi.org/10.1093/molbev/mst197
  17. Wolfe AD, Randle CP (2004) Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics. Syst Bot 29:1011-1120 https://doi.org/10.1600/0363644042451008
  18. Yang JY, Jang SY, Kim HK, Park SJ (2012) Development of a molecular marker to discriminate Korean Rubus species medicinal plants based on the nuclear ribosomal DNA internal transcribed spacer and chloroplast trnL-F intergenic region sequences. J Kor Soc Appl Biol Chem 55:281-289 https://doi.org/10.1007/s13765-012-1044-6
  19. Zou YS, Hou AJ, Zhu GF, Chen YF, Sun HD, Zhao QS (2004) Cytotoxic isoprenylated xanthones from Cudrania tricuspidata. Bioorg Med Chem 12:1947-1953 https://doi.org/10.1016/j.bmc.2004.01.030

Cited by

  1. Practical application of the Bar-HRM technology for utilization with the differentiation of the origin of specific medicinal plant species vol.45, pp.1, 2018, https://doi.org/10.5010/JPB.2018.45.1.009