DOI QR코드

DOI QR Code

Development of Growth Models as Affected by Cultivation Season and Transplanting Date and Estimation of Prediction Yield in Kimchi Cabbage

재배시기, 정식일에 따른 배추의 생육 모델 개발 및 생산량 예측 평가

  • Lee, Jin Hyoung (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Hee Ju (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Kim, Sung Kyeom (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Hee Su (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Choi, Chang Sun (Vegetable Research Division, National Institute of Horticultural & Herbal Science)
  • 이진형 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이희주 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 김성겸 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이상규 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이희수 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 최장선 (농촌진흥청 국립원예특작과학원 채소과)
  • Received : 2017.04.28
  • Accepted : 2017.08.01
  • Published : 2017.10.31

Abstract

This study was carried out to estimate growth characteristics of Kimchi cabbage cultivated in two different growing seasons and three transplanting dates in the greenhouses, and to create a predicting model for the production of Kimchi cabbage based on the growth parameters and climatic elements. Kimchi cabbages were transplanted three times at intervals of two weeks in spring and autumn growing seasons. Sigmoidal models for the estimation of fresh weight (Fw) was designed with days after transplanting, which were Fw=4451.5/[1+exp{-(DAT-34.1)/3.6}]($R^2=0.992$) and Fw=7182.0/[1+exp{-(DAT-53.8)/11.6}] ($R^2=0.979$), respectively. The relationship between fresh weight of Kimchi cabbage and growing degree days (GDD) was highly correlated, and the regression model represented by Fw=4451.5/[1+exp{-(GDD-34.1)/3.6}] ($R^2=0.992$) in spring growing season. The yield of Kimchi cabbage under spring and autumn growing season were estimated 11348.3kg/10a and 15128.2kg/10a, respectively, which were much different than outdoor culture each growing season, while greenhouse cultivation have shown similar results. To estimate the efficacy of prediction yield in Kimchi cabbage, we will need to supplement a predicting model, which was based on the parameters and climatic elements by the field cultivation.

본 연구는 배추의 작황 예측프로그램을 개발하기 위한 생육조사로 정식시기를 봄과 가을에 2주 간격으로 3회씩 각각 정식하여, 생체중, 건물중, 엽장, 엽폭, 엽수, 엽면적등을 정식후 2주간격으로 조사하였다. 정식 후 일수에 따른 생체중과 건물중의 변화와 GDD에 따른 생체중, 건물중, 엽면적 그리고 엽수의 변화에 대하여 회귀분석하였다. 정식 후 일수에 따른 봄배추와 가을배추의 생장을 S자형 곡선으로 분석한 결과 생체중의 회귀식은 각각 FW=4451.5/[1+exp{-(DAT-34.1)/3.6}]($R^2=0.992$)과 각각 FW=7182.0/[1+exp(-(DAT-53.8)/11.6)]($R^2=0.979$) 였다. 그리고 GDD에 따른 봄배추의 생체중의 모델은 각각 FW=4411.2/[1+exp{-(GDD-585.2)/128.6}] ($R^2=0.992$) 및 FW=13718/[1+exp{-(GDD-1278.6)/219.5}] ($R^2=0.981$)였다. 봄배추와 가을배추의 단위면적당 생산량은 각각 11348.3kg/10a와 1,5128.2kg/10a로 노지재배의 단수와는 차이를 보인 반면에 봄배추의 경우 시설재배의 단수 1,1147.3kg/10a와 유사한 결과를 보였다. 차후에 노지재배를 통해, 배추의 생산성에 관여하는 주요 요인을 분석하고, 실시간으로 계측한 생육 및 기상자료를 기반으로 하여 보다 정확한 예측프로그램으로 보정 및 검증해야할 것이다.

Keywords

References

  1. Ahn, J.H., K.D. Kim, and J.T. Lee. 2014. Growth modeling of Chinese cabbage in an alpine area. Korean J. Agricultural and forest meteorology. 15(4):309-315.
  2. Kalisz, A., J. Kostrzewa, A. Sekara, A. Grabowska, and S. Cebula. 2012. Yield and nutritional quality of several nonheading Chinese cabbage (Brassica rapa var. chinensis) cultivars with different growing period and its modeling. Korean J. Hortic. Sci Technol 30:650-656. https://doi.org/10.7235/hort.2012.12108
  3. Kim, K.D., J.T. Suh, J.N. Lee, D.L. Yoo, M. Kwon, and S.C. Hong. 2015. Evaluation of factors related to productivity and yield estimation based on growth characteristics and growing degree days in highland Kimchi cabbage. Korean J. Hortic. Sci. Technol. 33:911-922 (in Korean). https://doi.org/10.7235/hort.2015.15074
  4. Kim, S.W., H.Y. Rho, and H.B. Lim. 2017. Agriculture in future: Kimchi cabbage. KREI. 560-577.
  5. Kim, I.G., K.J. Park, and B.J. Kim. 2013. Analysis of meteorological factors on yield of Chinese cabbage and radish in winter cropping system. Korean Journal of Agricultural and Forest Meteorology 15:59-66 (in Korean). https://doi.org/10.5532/KJAFM.2013.15.2.059
  6. Lee, J. W. 1996. A Study on the Analysis of Determinant Factors of Production for Radish and Chinese Cabbage, Korea Rural Economic Institute. p. 77.
  7. Lee, S.G., T.C. Seo, Y.A. Jang, J.G. Lee, C.W. Nam, C.S. Choi, K.H. Yeo, and Y.C. Um. 2012. Prediction of Chinese cabbage yield as affected by planting date and nitrogen fertilization for spring production. J. Bio-Environ. Cont 21:271-275 (in Korean).
  8. Lee, S.G., C.S. Choi, J.M. Choi, H.J. Lee, S.H. Park, and K.R. Do. 2013. Effects of growth and cellular tissue under abnormal climate condition in Chinese Cabbage. Protected Horticulture and Plant Factory. 22(2):87-90 (in Korean). https://doi.org/10.12791/KSBEC.2013.22.2.087
  9. Lee, S.G., H.J. Lee, S.K. Kim, C.S. Choi, S.T. Park, Y.A. Jang, and K.R. Do. 2015. Effects of vernalization, temperature, and soil drying periods on the growth and yield of Chinese Cabbage. Korean J. Hortic. Sci. Technol 33(6):820-828 (in Korean). https://doi.org/10.7235/hort.2015.15076
  10. MAFRA. 2014. Current status of vegetable greenhouse and production of vegetables in 2013 (in Korean).
  11. Oh, S.J., K.H. Moon, I.C. Son, E.Y. Song, Y.E. Moon, and S.C. Koh. 2014. Growth, photosynthesis and chlorophyll fluorescence of Chinese cabbage in response to high temperature. Kor. J. Hort. Sci. Technol 32:318-329 (in Korean).
  12. Paranhos, L. G., Barrett, C. E., Zotarelli, L., Darnell, R., Migliaccio, K., & Borisova, T. 2016. Planting date and in-row plant spacing effects on growth and yield of cabbage under plastic mulch. Scientia Horticulturae. 202:49-56. https://doi.org/10.1016/j.scienta.2016.02.022
  13. Rodriguez, V. M., Soengas, P., Alonso-Villaverde, V., Sotelo, T., Cartea, M. E., & Velasco, P. 2015. Effect of temperature stress on the early vegetative development of Brassica oleracea L. BMC plant biology. 15(1):145-153. https://doi.org/10.1186/s12870-015-0535-0
  14. Strauss, A. J., Kruger, G. H., Strasser, R. J., & Van Heerden, P. D. 2007. The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerance. Physiol. plant. 131(1):89-105. https://doi.org/10.1111/j.1399-3054.2007.00930.x