DOI QR코드

DOI QR Code

An Investigation into the Secondary Science Teachers' Perception on Scientific Models and Modeling

과학적 모델과 모델링에 대한 중등 과학 교사의 인식 탐색

  • Received : 2017.09.04
  • Accepted : 2017.09.21
  • Published : 2017.10.31

Abstract

The purpose of this study is to probe secondary science teachers' perception on scientific models and modeling. A total of 50 experienced science teachers were surveyed with 10 open-ended questions about several aspects of models and modeling: definition, examples, purpose, multiplicity, changeability, design/construction, evaluation and beliefs in the use of models and modeling as a teaching tool. The analysis of the data shows the following results: 1) understanding of models and modeling held by a majority of experienced secondary science teachers was far from that of experts as they concentrated on a model's superficial, representative, and visual functions, 2) when it comes to their view toward the use of a model, a model does not remain in the stage of 'doing science' but in the stage of being a subsidiary teaching tool for the teacher's explaining and the students' understanding of scientific concepts, 3) the subjects they majored in made meaningful differences in their contextual understanding of models and modeling, 4) though most of the teachers acknowledged the importance of teaching about models and modeling, even a lot of them showed a negative position toward the opinion that they are willing to apply modeling to their classes. Implications of the results were discussed in terms of intervention in order to enhance secondary science teachers' understanding and pedagogical content knowledge of models and modeling.

과학 교육의 궁극적 목표인 학생들의 과학적 소양을 배양하는데 있어 이하 모델과 모델링이 차지하는 핵심적 역할을 고려할 때, 중등 과학 교사의 모델과 모델링에 대한 인식을 조사하는 것은 모델 기반 교수 학습을 실제 과학 수업에 적용하기 위한 토대를 마련하기 위해 필수적이라고 할 수 있다. 모델 기반 교수 학습이란 학생들이 자신의 모델을 생성(generating), 평가(evaluating), 수정(modifying)하는 모델링을 통해 과학적 내용 지식을 학습하고 나아가, 과학의 본성에 대한 바람직한 이해를 구축하도록 모델과 모델링 과정에 대하여 학습하는 것을 의미하며, 그러한 모델링 수업의 안내자로서 과학 교사는 모델과 모델링에 대하여 튼튼한 이해를 소유하여야 한다. 이에 본 연구자는 현재 학교 현장에서 과학 교과를 가르치는 50명의 중등 과학 교사를 대상으로, 10개의 개방형 문항을 사용하여 다음과 같은 두 가지 범주의 모델과 모델링에 대한 여러 측면의 인식, 첫째, 모델과 모델링에 대한 여러 측면의 이해, 즉 정의, 예시, 목적, 다양성, 변화성, 설계와 구성, 평가 기준, 둘째, 교수도구로서의 모델과 모델링 활용의 중요성과 교수 의사를 조사하였다. 수집된 자료에 대한 질적 분석을 통하여 다음과 같은 결론에 도달하였다. 첫째, 대부분의 과학 교사들은 모델이 갖는 교수도구로서의 기능적 측면에 집중하여, '실제의 단순화된 표상'이라는 모델 개념을 소유하지만, 과학 내용 전달 측면의 효용에만 집중하기 때문에, 과학에 있어서 모델과 모델링의 역할을 파악하지 못 하고 있다. 둘째, 대부분의 과학 교사들은 하나의 자연 현상을 표상하기 위해 다양한 모델이 구성될 수 있다는 사실과, 그러한 모델의 변화 가능성에 대하여 비교적 잘 인식하고 있으나, 모델의 설계와 구성이나 평가 기준 측면의 이해는 수정을 필요로 하는 제한적 수준에 머물러 있다. 셋째, 많은 교사들이 모델과 모델링에 대하여 가르치는 것의 중요성을 인식하지만, 여러 교육 과정 상의 현실적 어려움과, 교사의 지식 부족을 토로하여 모델과 모델링의 실제 현장 적용에 대해 부정적 시각을 견지하는 교사들이 상당하였다. 넷째, 물리, 화학, 지구과학 전공 교사들에 비하여, 생물 전공 교사들은 전공 또는 과목 의존적 이해의 양상, 즉 생물교과에 자주 등장하는 기능적, 실물 모델에 국한된 모델 개념을 소유하였고, 그러한 관점은 교수도구로서 모델과 모델링을 활용하는 것에 대한 부정적 견해로 나타나, 모델에 대한 지식과 신념 사이의 상호관련성이 일견 탐지되었다. 본 연구에서 중등 과학 교사들이 모델과 모델링에 대하여 무엇을 알고, 어떻게 가르치는가에 대한 기존의 인식을 탐색하여 분석한 결과는 과학 교사의 모델과 모델링에 대한 이해의 제고를 위한 적극적인 개입에 대하여 큰 시사점을 갖는다.

Keywords

References

  1. Acher, A., Arca, M., & Sanmarti, N. (2007). Modeling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91(3), 398-418. https://doi.org/10.1002/sce.20196
  2. Akerson, V. L., Townsend, J. S., Donnelly, L. A., Hanson, D. L., Tira, P., & White, O. (2009). Scientific modeling for inquiring teachers network (SMIT'N): The influence on elementary teachers' views of nature of science, inquiry, and modeling. Journal of Science Teacher Education, 20(1), 21-40. https://doi.org/10.1007/s10972-008-9116-5
  3. Al-Balushi, S. M. (2011). Students' evaluation of the credibility of scientific models that represent natural entities and phenomena. International Journal of Science and Mathematics Education, 9(3), 571-601. https://doi.org/10.1007/s10763-010-9209-4
  4. American Association for the Advancement of Science. (1993). Benchmarks for scientific literacy. Washington, D.C.: AAAS.
  5. Bailer-Jones, D. M. (2002). Scientists' thoughts on scientific models. Perspectives on Science, 10(3), 275-301. https://doi.org/10.1162/106361402321899069
  6. Barab, S. A., Hay, K. E., Barnett, M., & Keating, T. (2000). Virtual solar system project: Building understanding through model building. Journal of Research in Science Teaching, 37(7), 719-756. https://doi.org/10.1002/1098-2736(200009)37:7<719::AID-TEA6>3.0.CO;2-V
  7. Boulter, C. J., & Buckley, B. C. (2000). Constructing a typology of models for science education. In Developing models in science education (pp. 41-57). The Netherlands: Springer Netherlands.
  8. Cartier, J., Rudolph, J., & Stewart, J. (2001). The nature and structure of scientific models. National Center for Improving Student Learning and Achievement in Mathematics and Science.
  9. Cess-Newsome, J. (1999). Secondary teachers' knowledge and beliefs about subject matter and their impact on instruction. In Examining pedagogical content knowledge (pp. 51-94). The Netherlands: Springer Netherlands.
  10. Coll, R. K. (2006). The role of models, mental models and analogies in chemistry teaching. In Metaphor and analogy in science education (pp. 65-77). The Netherlands: Springer Netherlands.
  11. Crawford, B. A., & Cullin, M. J. (2004). Supporting prospective teachers' conceptions of modelling in science. International Journal of science Education, 26(11), 1379-1401. https://doi.org/10.1080/09500690410001673775
  12. Crawford, B. A,, & Cullin, M. J. (2005). Dynamic assessments of preservice teachers' knowledge of models and modelling. In Research and the quality of science education (pp. 309-323). The Netherlands: Springer Netherlands.
  13. Danusso, L., Testa, I., & Vicentini, M. (2010). Improving prospective teachers' knowledge about scientific models and modelling: Design and evaluation of a teacher education intervention. International Journal of Science Education, 32(7), 871-905. https://doi.org/10.1080/09500690902833221
  14. Darden, L. (1991). Theory change in science: Strategies from Mendelian genetics. New York: Oxford University Press.
  15. Davis, E. (2011). Design approaches to support pre-service teachers in scientific modeling. Journal of Science Teacher Education, 22(1), 1-21. https://doi.org/10.1007/s10972-010-9225-9
  16. Duschl, R. A., & Grandy, R. E. (2008). Reconsidering the character and role of inquiry in school science: Framing the debates. Teaching Scientific Inquiry: Recommendations for Research and Implementation, 1-37.
  17. Fernandez-Balboa, J. M., & Stiehl, J. (1995). The generic nature of pedagogical content knowledge among college professors. Teaching and Teacher Education, 11(3), 293-306. https://doi.org/10.1016/0742-051X(94)00030-A
  18. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.
  19. Giere, R. N. (1999). Science without laws. Chicago: University of Chicago Press.
  20. Giere, R. N., Bickle, J., & Mauldin, R. F. (2006). Understanding Scientific reasoning. Toronto: Thomson Wadsworth.
  21. Gilbert, J. K. (2007). Visualization: An emergent field of practice and enquiry in science education. Visualization: Theory and Practice in Science Education: Theory and Practice in Science Education, 3, 1.
  22. Gilbert, J. K., & Boulter, C. J. (1993). Models and modeling in science education. Hatfield, UK: Association of Science Education.
  23. Gilbert, J. K., & Boulter, C. J. (1998). Learning science through models and modelling. International Handbook of Science Education, 2, 53-66.
  24. Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79. https://doi.org/10.1002/tea.3660280107
  25. Gilbert, S. W., & Ireton, S. W. (2003). Understanding Models in Earth & Space Science. NSTA press.
  26. Gobert, J., & Discenna, J. (1997, April). The relationship between students' epistemologies and model-based reasoning. Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL.
  27. Gobert, J. D., O'Dwyer, L., Horwitz, P., Buckley, B. C., Levy, S. T., & Wilensky, U. (2011). Examining the relationship between students' understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5), 653-684. https://doi.org/10.1080/09500691003720671
  28. Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822. https://doi.org/10.1002/tea.3660280907
  29. Grunkorn, J., Hansch, J., zu Belzen, A. U., & Kruger, D. (2012). Determination of students' model competence using open-ended and hands-on tasks. Nature of Science, History, Philosophy, Sociology of Science, 39.
  30. Halloun, I. A. (2007). Mediated modeling in science education. Science & Education, 16(7-8), 653-697. https://doi.org/10.1007/s11191-006-9004-3
  31. Halloun, I. A., & Hesenes, D. (1987). Modeling instuctory physics. Cognition and Instruction, 12(2), 151-183. https://doi.org/10.1207/s1532690xci1202_4
  32. Hammer, D. (1994). Epistemological Beliefs in Introductory Physics. Cognition and Instruction, 12(2), 151-183. https://doi.org/10.1207/s1532690xci1202_4
  33. Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884
  34. Henze, I., Van Driel, J. H., & Verloop, N. (2007). The change of science teachers' personal knowledge about teaching models and modelling in the context of science education reform. International Journal of Science Education, 29(15), 1819-1846. https://doi.org/10.1080/09500690601052628
  35. Henze, I., Van Driel, J. H., & Verloop, N. (2008). Development of experienced science teachers' pedagogical content knowledge of models of the solar system and the universe. International Journal of Science Education, 30(10), 1321-1342. https://doi.org/10.1080/09500690802187017
  36. Hodson, D. (1998). Is this really what scientists do? Seeking a more authentic science in and beyond the school laboratory. Practical Work in School Science: Which Way Now, 93-108.
  37. Justi, R. S., & Gilbert, J. K. (2002a). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142
  38. Justi, R. S., & Gilbert, J. K. (2002b). Science teachers' knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24(12), 1273-1292. https://doi.org/10.1080/09500690210163198
  39. Justi, R. S., & Gilbert, J. K. (2003). Models and modelling in chemical education. In Chemical education: Towards research-based practice (pp. 47-68). The Netherlands: Springer Netherlands.
  40. Justi, R. S., & Van Driel, J. H. (2005). The development of science teachers' Knowledge on models and modelling: promoting, characterizing, and understanding the process. International Journal of Science Education, 27(5), 549-573. https://doi.org/10.1080/0950069042000323773
  41. Kang, N. H. (2017). Korean Teachers' Conceptions of Models and Modeling in Science and Science Teaching. Journal of the Korean Association for Research in Science Education, 37(1), 143-154.
  42. Kim, Y. C. (2006). Qqualitative Research Methodology. Seoul: Moonumsa.
  43. Kitcher, P. (1993). The advancement of science. Oxford: Oxford University Press.
  44. Krell, M., Upmeier zu Belzen, A., & Kruger, D. (2012). Assessment of students' concepts of models and modeling: Empirical evaluation of a model of model competence. In E-book proceedings of the ESERA 2011 conference (pp. 68-74).
  45. Krell, M., Reinisch, B., & Kruger, D. (2014). Analyzing students' understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Research in Science Education, 45(3), 367-393. https://doi.org/10.1007/s11165-014-9427-9
  46. Krell, M., Upmeier zu Belzen, A., & Kruger, D. (2014). Context-specificities in students' understanding of models and modelling: an issue of critical importance for both assessment and teaching. In E-Book proceedings of the ESERA 2013 conference. Science education research for evidence-based teaching and coherence in learning. Part (Vol. 6).
  47. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359. https://doi.org/10.1002/tea.3660290404
  48. Leatherdale, W. H. (1974). The role of analogy, model, and metaphor in science. Amsterdam: North-Holland.
  49. Lehrer, R., & Schauble, L. (2000). Modeling in mathematics and science(pp. 101-159). R. Glaser (Ed.). Hillsdale, NJ: Lawrence Erlbaum.
  50. Longino, H. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton, NJ: Princeton University Press.
  51. Loucks-Horsley, S., Stiles, K. E., Mundry, S., Love, N., & Hewson, P. W. (2009). Designing professional development for teachers of science and mathematics. London: Corwin Press.
  52. Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603-630. https://doi.org/10.1080/09500690802538045
  53. Mandinach, E., & Cline, H. (1993). Systems, science and schools. System Dynamics Review, 9(2), 195-206. https://doi.org/10.1002/sdr.4260090208
  54. Mahr, B. (2009). Information science and the logic of models. Software and Systems Modeling, 8(3), 365-383. https://doi.org/10.1007/s10270-009-0119-2
  55. National Research Council. (1996). National Science Education Standards. Washington, D.C.: National Academy Press.
  56. Nersessian, N. J. (1992). In the theoretician's laboratory: Thought experimenting as mental modeling. In PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association (pp. 291-301). Philosophy of Science Association.
  57. Nersessian, N. J. (1995). Should physicists preach what they practice?. Science & Education, 4(3), 203-226. https://doi.org/10.1007/BF00486621
  58. Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 17-34). Cambridge: Cambridge University Press.
  59. Nersessian, N. J. (2005). Interpreting scientific and engineering practices: Integrating the cognitive, social, and cultural dimensions. Scientific and Technological Thinking, 17-56.
  60. Nespor, J. (1987). The role of beliefs in the practice of teaching. Journal of Curriculum Studies, 19(4), 317-328. https://doi.org/10.1080/0022027870190403
  61. Niiniluoto, I. (2002). Critical scientific realism. Oxford, England: Oxford University Press.
  62. Ogborn, J., Boohan, R., Mellar, H., & Bliss, J. (1994). Learning with artificial worlds: Computer based modelling in the curriculum. Learning With Artificial Worlds: Computer Based Modelling in the Curriculum. London: The Falmer Press.
  63. Oh, P. S. (2009). Preservice elementary teachers' perceptions on models used in science and science education. Elementary Science Education, 28(4), 450-466.
  64. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
  65. Pajares, M. F.(1992). Teachers' beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307-332. https://doi.org/10.3102/00346543062003307
  66. Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York, NY: Basic Books.
  67. Passmore, C., & Stewart, J. (2002). A modeling approach to teaching evolutionary biology in high schools. Journal of Research in Science Teaching, 39(3), 185-204. https://doi.org/10.1002/tea.10020
  68. Penner, D. E., Giles, N. D., Lehrer, R., & Schauble, L. (1997). Building functional models: Designing an elbow. Journal of Research in Science Teaching, 34(2), 125-143. https://doi.org/10.1002/(SICI)1098-2736(199702)34:2<125::AID-TEA3>3.0.CO;2-V
  69. Prather, J. P. (1992). Educational implications of the Khunian concept of normal and revolutionary science. History and Philosophy of Science in Science Education, 2, 299-312.
  70. Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners' epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486-511. https://doi.org/10.1002/tea.20415
  71. Raghavan, K., & Glaser, R. (1995). Model-based analysis and reasoning in science: the MARS curriculum. Science Education, 79(1), 37-61. https://doi.org/10.1002/sce.3730790104
  72. Rea-Ramirez, M. A., Clement, J., & Nunez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In Model based learning and instruction in science (pp. 23-43). The Netherlands: Springer Netherlands.
  73. Resnick, M. (1999). Decentralized modeling and decentralized thinking. In W. Feurzeig & N. Roberts (Eds.), Modeling and simulation in science and mathematics education (pp. 114-137). New York: Springer-Verlag.
  74. Richards, J., Barowy, W., & Levin, D. (1992). Computer simulations in the science classroom. Journal of Science Education and Technology, 1(1), 67-79. https://doi.org/10.1007/BF00700244
  75. Rosenblueth, A., & Wiener, N. (1945). The role of models in science. Philosophy of science, 12(4), 316-321. https://doi.org/10.1086/286874
  76. Schwarz, C. V. (1998). Developing students' understanding of scientific modeling. Doctoral dissertation, University of California, Berkeley.
  77. Schwarz, C. V., & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K-8 science teaching. Science Education, 91, 158-186. https://doi.org/10.1002/sce.20177
  78. Schwarz, C. V., & White, B. Y. (1999). What do seventh grade students understand about scientific modeling from a model-oriented physics curriculum. National Association for Research in Science Teaching, March, 28-31.
  79. Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205. https://doi.org/10.1207/s1532690xci2302_1
  80. Smith, C. L., Maclin, D. Houghton, C., & Hennessey, M. G. (2000). Sixth-grade students' epistemologies of science: The impact of school science experiences on epistemological development. Cognition and Instruction, 18(3), 349-422. https://doi.org/10.1207/S1532690XCI1803_3
  81. Somerville, R. C., & Hassol, S. J. (2011). The science of climate change. Physics Today, 64(10), 48. https://doi.org/10.1063/PT.3.1296
  82. Songer, N. B., & Linn, M. C. (1991). How do students' views of science influence knowledge integration. Journal of Research in Science Teaching, 28(9), 761-784. https://doi.org/10.1002/tea.3660280905
  83. Spitulnik, M., Krajcik, J., & Soloway, E. (1999). Construction of models to promote scientific understanding. In W. Feurzeig & N. Roberts (Eds.), modeling and simulation in science and mathematics education (pp. 70-94). New York: Springer-Verlag.
  84. Stylianidou, F., Boohan, R., & Ogborn, J. (2005). Science teachers' transformations of the use of computer modeling in the classroom: Using research to inform training. Science Education, 89(1), 56-70. https://doi.org/10.1002/sce.20043
  85. Tomasi, J. (1988). Models and modeling in theoretical chemistry. Journal of Molecular Structure: THEOCHEM, 179(1), 273-292. https://doi.org/10.1016/0166-1280(88)80128-3
  86. Tomasi, J. (1999). Towards 'chemical congruence'of the models in theoretical chemistry. International Journal for Philosophy of Chemistry, 5(2), 79-115.
  87. Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368. https://doi.org/10.1080/09500690110066485
  88. Upmeier zu Belzen, A., & Kruger, D. (2010). Model competence in bioology teaching. Zeitschrift fur Didaktik der Naturwissenschaften, 16, 41-57.
  89. Van Der Valk, T., Van Driel, J. H., & De Vos, W. (2007). Common characteristics of models in present-day scientific practice. Research in Science Education, 37(4), 469-488. https://doi.org/10.1007/s11165-006-9036-3
  90. Van Driel, J. H., & Verloop, N. (1998). Teachers' knowledge about the nature of models and modelling in science. Paper presented at the annual meeting of the National Association for Research in Science Education, San Diego.
  91. Van Driel, J. H., & Verloop, N. (1999). Teachers' knowledge of models and modeling in science. International Journal of Science Education, 21(11), 1141-1154. https://doi.org/10.1080/095006999290110
  92. Van Driel, J. H., & Verloop, N. (2002). Experienced teachers' knowledge of teaching and learning of models and modelling in science education. International Journal of Science Education, 24(12), 1255-1272. https://doi.org/10.1080/09500690210126711
  93. Van Driel, J. H., Verloop, N., & De Vos, W. (1998). Developing science teachers' pedagogical content knowledge. Journal of research in Science Teaching, 35(6), 673-695. https://doi.org/10.1002/(SICI)1098-2736(199808)35:6<673::AID-TEA5>3.0.CO;2-J
  94. Verloop, N. (1992). Practical knowledge of teachers: A blind spot of educational theory. Pedagogische Studien, 69, 410-423.
  95. White, B. (1993). Thinker Tools: Causal models, conceptual change, and science education. Cognition and Instruction, 10(1), 1-100. https://doi.org/10.1207/s1532690xci1001_1
  96. White, B. & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118. https://doi.org/10.1207/s1532690xci1601_2
  97. Windschitl, M., & Thompson, J. (2006). Transcending simple forms of school science investigation: The impact of preservice instruction on teachers' understanding of model-based inquiry. American Educational Research Journal, 43(4), 783-835. https://doi.org/10.3102/00028312043004783
  98. Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259
  99. Yager, R. E. (1991). The constructivist learning model. The Science Teacher, 58(6), 52.
  100. Yip, S., & De La Rubia, T. D. (2009). Scientific modeling and simulations. The Netherlands: Springer Netherlands.

Cited by

  1. 2009·2015 개정 교육과정 화학 I 및 화학 II 교과서 및 교사용 지도서에 제시된 산·염기 모델 내용에 대한 '이그노런스' 분석 vol.64, pp.3, 2017, https://doi.org/10.5012/jkcs.2020.64.3.175