DOI QR코드

DOI QR Code

The Quality Characteristics of Low Raffinose and Stachyose (LRS) Soybean Cultivars and their Tofu

Raffinose와 stachyose 함량이 낮은 콩과 두부의 품질특성

  • Lee, Soo-Jung (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Hu, Wen-Si (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Chung, Jong-Il (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jeong, Bo-Young (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Sung, Nak-Ju (Department of Food Science and Nutrition, Gyeongsang National University)
  • 이수정 (경상대학교 농업생명과학연구원) ;
  • 호문사 (경상대학교 식품영양학과) ;
  • 정종일 (경상대학교 농업생명과학연구원) ;
  • 정보영 (경상대학교 농업생명과학연구원) ;
  • 성낙주 (경상대학교 식품영양학과)
  • Received : 2017.08.22
  • Accepted : 2017.10.10
  • Published : 2017.11.30

Abstract

The quality characteristics of three non-genetically modified (GM) LRS soybean cultivars free of LOX 1, 2 and 3, such as Jinyang, Hayoung and Daebok, were compared to the characteristics of Taekwang, a soybean with LOX 1, 2 and 3 and general contents of raffinose and stachyose. Taekwang was used as a control soybean. The weights of 100 for Taekwang and Hayoung soybeans were significantly higher than those of the other samples. The crude-protein contents of the Jinyang and Hayoung soybeans were significantly higher than the crude-protein content of the Taekwang soybeans. Similar tofu yields were observed in the Taekwang, Hayoung and Daebok soybeans. The highest tofu yield was observed in the Hayoung soybeans. The isoflavone contents of the soybeans and tofu were 1.4-1.6 times and 1.8-3.4 times higher than the contents of the control soybeans, respectively. The total phenol contents of the Hayoung and Daebok soybeans were significantly higher than the contents of the control soybeans. Additionally, the total phenol and flavonoid contents were significantly higher in the tofu made from the LRS cultivars than in the tofu made from the control cultivar. The antioxidant activities of the Taekwang soybeans were higher than the antioxidant activities of the LRS-cultivar soybeans. However, the antioxidant activities of tofu made from the LRS cultivars were significantly higher than the antioxidant activities of tofu made from the control cultivar. The results suggested that the soybeans of the LRS cultivars were suitable for tofu products. The Hayoung cultivar may be the most suitable due to its higher crude protein and isoflavone contents and its significant antioxidant activity.

LOX-1,2,3 결핍과 비소화성 당류인 raffinose와 stachyose 함량이 낮은 품종(LRS)인 진양콩, 하영콩 및 대복콩을 원료로 하여 제조한 두부의 품질특성을 태광콩 두부와 비교하였다. 태광콩과 하영콩의 백립중은 여타 시료에 비해 유의적으로 높았다. 조단백질 함량은 태광콩에 비해 진양콩 및 하영콩에서 유의적으로 많았다. 두부의 수율은 태광콩, 하영콩 및 대복콩으로 만든 두부가 비슷한 수준이었다. 두부의 경도는 태광콩 및 대복콩으로 만든 두부가 가장 낮았으며, 하영콩으로 만든 두부에서 유의적으로 높았다. 콩 및 두부의 이소플라본 함량은 대조구에 비해 LRS 콩은 약 1.4~1.6배, 두부는 약 1.8~3.4배 높은 함량이었다. 콩의 총 페놀 함량은 대조구에 비해 하영콩 및 대복콩에서 유의적으로 높았다. 두부의 총 페놀 및 플라보노이드 함량은 대조구에 비해 하영콩 및 대복콩으로 만든 두부에서 유의적으로 높았다. 콩의 항산화 활성은 태광콩이 LRS 콩에 비해 높은 활성이었으나, 두부에서는 하영콩 및 대복콩으모 만든 두부가 대조구에 비해 유의적으로 높았다. 따라서 LRS 콩은 두부 제조에 적합하나 특히 하영콩이 콩의 단백질, 이소플라본 함량 및 두부의 항산화 활성 측면에서 가장 우수한 것으로 판단된다.

Keywords

References

  1. Bae, E. A, Kwon, T. W. and Moon, G. S. 1997. Isoflavone contents and antioxidative effects of soybeans, soybean curd and their by-products. J. Kor. Soc. Food Sci. Nutr. 26, 371-375.
  2. Benzie, I. F. F. and Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 230, 70-79.
  3. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  4. Chang, C. I., Lee, J. K., Ku, K. H. and Kim, W. J. 1990. Comparison of soybean varieties for yield, chemical and sensory properties of soybean curds. Kor. J. Food Sci. Technol. 22, 439-444.
  5. Choi, S. W., Han, S. J., Sung, M. K. and Chung, J. I. 2015. Variation of raffinose and stachyose content as influenced by genotype in soybean seed. J. Agric. Life Sci. 49, 73-80.
  6. Chung, D. O. 2010. Characteristics of tofu (soybean curd) quality mixed with Enteromorpha intenstinalis powder. J. Kor. Soc. Food Sci. Nutr. 39, 745-749. https://doi.org/10.3746/jkfn.2010.39.5.745
  7. Chung, M. G. and Lee, J. C. 2003. Functional characteristics of soybean oligosaccharide. J. Crop Sci. 48, 58-64.
  8. Gutfinger, T. 1981. Polyphenols in olive oil. J. Am. Oil Chem. Soc. 58, 966-968. https://doi.org/10.1007/BF02659771
  9. Ha, D. S. 2017. Breeding of intermediate parent with low stachyose and raffinose content in soybean. MS dissertation, Gyeongsang National University, Jinju, Korea.
  10. Ha, D. S., Moon, J. Y., Choi, S. W., Shim, S. I., Kim, M. C. and Chung, J. I. 2017. Agronomic traits of soybean breeding lines with low stachyose and raffinose contents. Kor. J. Crop Sci. 62, 143-148. https://doi.org/10.7740/kjcs.2017.62.2.143
  11. Hata, Y., Yamamoto, M. and Nakajima, K. 1991. Effects of soybean oligosaccharides on human digestive organs: Estimation of fifty percent effective dose and maximum non-effective dose based on diarrhea. J. Clin. Biochem. Nutr. 10, 135-144. https://doi.org/10.3164/jcbn.10.135
  12. Hwang, C. R., Lee, S. J., Kang, J. R., Kwon, M. H., Kwon, H. J., Chung, J. I. and Sung, N. J. 2012. Physicochemical characteristics and antioxidant activity of Kanjang made from soybean cultivars lacking lipoxygenase and kunitz trypsin inhibitor protein. J. Agric. Life Sci. 46, 109-123.
  13. Kao, T. H. and Chen, B. H. 2006. Functional components in soybean cake and their effects on antioxidant activity. J. Agric. Food Chem. 54, 7544-7555. https://doi.org/10.1021/jf061586x
  14. Kerr, P. S. and Sebastian, S. A. 2000. Soybean products with improved carbohydrate composition and soybean plants. U.S. Patent 6147193.
  15. Kim, I. S., Lee, S. J., Lee, H. J., Oh, S. J., Chung, J. I. and Sung, N. J. 2014. Quality characteristics and antioxidant activity of tofu made from lipoxygenase-free genotypes. Kor. J. Food Preserv. 21, 215-223. https://doi.org/10.11002/kjfp.2014.21.2.215
  16. Kim, W. J., Smith, C. J. B. and Nakayama, T. O. M. 1973. The removal of oligosaccharides from soybeans. Lebensm. Wiss. U. Technol. 6, 201-204.
  17. Kim, Y. H. and Kim, S. R. 1997. Isoflavone content in Korean soybean cultivars. SoonChunhyang J. Nat. Sci. 3, 331-337.
  18. Lee, H. and Garlich, J. D. 1992. Effect of overcooked soybean meal on chicken performance and amino acid availability. Poult. Sci. 71, 499-508. https://doi.org/10.3382/ps.0710499
  19. Lee, H. I., Kim, K. C. and Park, E. H. 2005. Sprout properties and lipoxygenase activity of lipoxygenase-less soybean genotypes. Kor. J. Crop Sci. 50, 112-117.
  20. Lee, H. S., Lee, Y. H. and Lee, S. H. 2011. Significance of soybean as food and strategies for self sufficiency improvement. NAS 50, 97-137.
  21. Lee, S. J., Kim, I. S., Hu, W. S., Chung, J. I. and Sung, N. J. 2016. Quality characteristics and antioxidant activity of Doenjang made from lipoxygenase-free genotypes soybeans. J. Kor. Soc. Food Sci. Nutr. 45, 35-43. https://doi.org/10.3746/jkfn.2016.45.1.035
  22. Lee, S. J., Kim, I. S., Lee, H. J., Chung, J. I. and Sung, N. J. 2013. Properties of non-GM soybeans with lipoxygenase free genotypes. J. Kor. Soc. Food Sci. Nutr. 42, 1629-1637. https://doi.org/10.3746/jkfn.2013.42.10.1629
  23. Lee, S., Lee, Y. B. and Kim, H. S. 2013. Analysis of the general and functional components of various soybeans. J. Kor. Soc. Food Sci. Nutr. 42, 1255-1262. https://doi.org/10.3746/jkfn.2013.42.8.1255
  24. Mital, B. K., Steinkraus, K. H. and Naylor, H. B. 1974. Growth of lactic acid bacteria in soymilk. J. Food Sci. 39, 1018-1022. https://doi.org/10.1111/j.1365-2621.1974.tb07300.x
  25. Moreno, M. I. N., Isla, M. I., Sanpietro, A. R. and Vattuone, M. A. 2000. Comparison of the free radical scavenging activity of propolis from several region of Argentina. J. Enthropharmacol. 71, 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  26. Murphy, E. L., Horsley, H. and Burr, H. K. 1972. Fractionation of dry bean extracts which increase carbon dioxide egestion in human flatus. J. Agric. Food Chem. 20, 813-817. https://doi.org/10.1021/jf60182a024
  27. Myung, J. G. and Hwang, I. K. 2008. Functional components and antioxidative activities of soybean extracts. Korea Soybean Digest 25, 23-29.
  28. Ogawa, I. and Saio, K. 1987. Processing properties of Japanese domestic soybeans. Rep. Natl. Food Res. Inst. 51, 15-22.
  29. Park, C. K. and Hwang, I. K. 1994. Effects of coagulant concentration and phytic acid addition on the contents of Ca and P and rheological property of soybean curd. Kor. J. Food Sci. Technol. 26, 355-358.
  30. Peterson, G. 1995. Evaluation of the biochemical targets of genistein in tumor cells. J. Nutr. 125, 784-789.
  31. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  32. Ruiz-Larrea, M. B., Mohan, A. R., Paganga, G., Miller, N. J., Bolwell, G. P. and Rice-Evans, C. A. 1997. Antioxidant activity of phytoestrogenic isoflavones. Free Radic. Res. 26, 63-70. https://doi.org/10.3109/10715769709097785
  33. Saio, K. 1979. Tofu-relationship between texture and fine structure. Cereal Foods World. J. Food Quality 15, 53-59.
  34. Seo, Y. J., Kim, M. K., Lee, S. and Hwang, I. K. 2010. Physicochemical characteristics of soybeans cultivated in different regions and the accompanying soybean curd properties. Kor. J. Food Cook. Sci. 26, 441-449.
  35. Shih, M. C., Yang, K. T. and Kuo, S. J. 2002. Quality and antioxidative activity of black soybean tofu as affected by bean cultivar. J. Food Sci. 67, 480-484. https://doi.org/10.1111/j.1365-2621.2002.tb10623.x
  36. Streggerda, F. R., Richards, E. A. and Rackis, J. J. 1966. Effects of various soybean products on flatulence in the adult man. Proc. Soc. Expt. Biol. Med. 121, 1235-1239. https://doi.org/10.3181/00379727-121-31014
  37. Sung, M. K., Han, S. J., Seo, H. J., Choi, S. W., Nam, S. H. and Chung, J. I. 2014. Genotype and environment influence on raffinose and stachyose content of soybean seed. Kor. J. Crop Sci. 59, 319-324. https://doi.org/10.7740/kjcs.2014.59.3.319
  38. Sung, M. K., Kim, K. R., Park, J. S., Han, E. H., Nam, J. W. and Chung, J. I. 2010. Selection of lipoxygenase, kunitz trypsin inhibitor and 7S ${\alpha}'$-subunit protein free soybean strain. J. Agric. Life Sci. 44, 29-33.
  39. Taver, B. and Aslihan, D. 2007. Lipoxygenase in fruits and vegetables: a review. Enzyme Microb. Technol. 40, 491-496. https://doi.org/10.1016/j.enzmictec.2006.11.025
  40. Thananunkul, D., Tanaka, M., Chichester, C. O. and Lee, T. C. 1976. Degradation of raffinose and stachyose in soybean milk by a ${\alpha}$-galactosidase from Mortierella vinacea, entrapment of ${\alpha}$-galactosidase within polyacrylamide gel. J. Food Sci. 41, 173-175. https://doi.org/10.1111/j.1365-2621.1976.tb01128.x
  41. Wang, H. and Murphy, P. A. 1994. Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year, and location. J. Agric. Food Chem. 42, 1674-1677. https://doi.org/10.1021/jf00044a017
  42. Wei, H., Wei, L., Frenkel, K., Bowen, R. and Barnes, S. 1993. Inhibition of tumor promotor-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr. Cancer 20, 1-5. https://doi.org/10.1080/01635589309514265
  43. Yoo, K. M. 2011. Effects of soybean varieties on the physicochemical and sensory characteristics of tofu. Kor. J. Food Nutr. 24, 451-457. https://doi.org/10.9799/ksfan.2011.24.3.451