DOI QR코드

DOI QR Code

Current Research Trends on Surface Modification of Pressure-driven Membranes for Fouling Mitigation

압력 구동 기반 분리막의 막 오염 저감을 위한 표면 개질 방법 최신 연구 동향

  • Jun, Byung-Moon (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Hyung Kae (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Woo Jeong (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Park, Jihun (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Jong Hyeok (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kwon, Young-Nam (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 전병문 (울산과학기술원(UNIST) 도시환경공학부) ;
  • 이형개 (울산과학기술원(UNIST) 도시환경공학부) ;
  • 김우정 (울산과학기술원(UNIST) 도시환경공학부) ;
  • 박지훈 (울산과학기술원(UNIST) 도시환경공학부) ;
  • 김종혁 (울산과학기술원(UNIST) 도시환경공학부) ;
  • 권영남 (울산과학기술원(UNIST) 도시환경공학부)
  • Received : 2018.02.05
  • Accepted : 2018.02.20
  • Published : 2018.02.28

Abstract

Fresh water is an important resource for humans, and pressure-driven membrane technology has been widely known as an energy-efficient method to obtain water resource. However, membrane fouling phenomenon, which is one of the major issue during operation, deteriorates membrane permeability. These fouling is usually affected by interaction between surface of membrane and various foulants, therefore, modification of membrane's surface is one of the methods to improve fouling-resistance. This review focuses on the method to modify surface of pressure-driven membranes such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Specifically, there are two different surface modification methods: (1) adsorption and coating as the physical modification methods, (2) cross-linker, free radical polymerization (FRP), atom transfer radical polymerization (ATRP), plasma/UV-induced polymerization as the chemical modification methods. This review introduces the physico - chemical surface modification methods reported in recent papers and suggests research directions for membrane separation which can increase membrane fouling resistance.

고분자 재질의 압력 구동 기반 분리막을 이용하여 담수를 얻기 위한 공정은 에너지 효율이 높은 방법으로 알려져 있다. 하지만, 분리막 운전 중에 투과성능을 떨어트리는 막 오염 문제가 발생 하기에, 막 오염을 제어하는 것은 분리막 공정의 에너지 효율을 높이는 데 필수적이다. 막 오염은 일반적으로 분리막 표면과 막 오염 물질과의 상호 작용으로 발생하며, 분리막 표면을 개질하는 방법은 막 오염을 방지하여 높은 투과 특성을 지속적으로 유지하게 할 수 있는 좋은 방법 중 하나이다. 본 논문에서는 압력 구동 기반 분리막인 미세여과, 한외여과, 나노여과 및 역삼투용 분리막의 표면을 개질할 수 있는 방법을 정리하였다. 구체적인 개질 방법으로는 개질 물질의 흡착 및 코팅 방법인 물리적 방법과 가교제 이용, 자유 라디칼 중합(FRP), 원자 이동 라디칼 중합(ATRP), 플라즈마 및 자외선 조사 기반 중합인 화학적 방법으로 나누어 정리하였다. 본 총설에서는 최근 논문상에 보고되고 있는 물리화학적 표면 개질 방법을 소개하고, 막 오염 저항성을 높일 수 있는 분리막 제조를 위한 연구방향을 제시하고자 한다.

Keywords

References

  1. B.-M. Jun, S.-W. Han, Y.-K. Kim, N. T. P. Nga, H.-G. Park, and Y.-N. Kwon, "Conditions for ideal draw solutes and current research trends in the draw solutes for forward osmosis process", Membr. J., 25, 132 (2015).
  2. B.-M. Jun, E.-T. Yun, S.-W. Han, N. T. P. Nga, H.-G. Park, and Y.-N. Kwon, "Chlorine disinfection in water treatment plants and its effects on polyamide membrane", Membr. J., 24, 88 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.88
  3. J. Ayyavoo, T. P. N. Nguyen, B.-M. Jun, I.-C. Kim, and Y.-N. Kwon, "Protection of polymeric membranes with antifouling surfacing via surface modifications", Colloid Surf. A-Physicochem. Eng. Asp., 506, 190 (2016). https://doi.org/10.1016/j.colsurfa.2016.06.026
  4. J.-E. Gu, B.-M. Jun, and Y.-N. Kwon, "Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane", Water Res., 46, 5389 (2012). https://doi.org/10.1016/j.watres.2012.07.030
  5. B.-M. Jun, T. P. N. Nguyen, Y.-K. Kim, H. K. Lee, and Y.-N. Kwon, "Surface modification of TFC FO membrane using N-isopropylacrylamide (NIPAM) to enhance fouling resistance and cleaning efficiency", Desalin. Water Treat., 65, 11 (2017). https://doi.org/10.5004/dwt.2017.2031710
  6. R. R. Choudhury, J. M. Gohil, S. Mohanty, and S. K. Nayak, "Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes", J. Mater. Chem. A, 6, 313 (2018).
  7. V. Kochkodan, D. J. Johnson, and N. Hilal, "Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling", Adv. Colloid Interface Sci., 206, 116 (2014). https://doi.org/10.1016/j.cis.2013.05.005
  8. M. E. Callow and R. L. Fletcher, "The influence of low surface energy materials on bioadhesion: A review", Int. Biodeterior. Biodegrad., 34, 333 (1994). https://doi.org/10.1016/0964-8305(94)90092-2
  9. Y. Zhou, S. Yu, C. Gao, and X. Feng, "Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance", Sep. Purif. Technol., 66, 287 (2009). https://doi.org/10.1016/j.seppur.2008.12.021
  10. S. Yu, G. Yao, B. Dong, H. Zhu, X. Peng, J. Liu, M. Liu, and C. Gao, "Improving fouling resistance of thin-film composite polyamide reverse osmosis membrane by coating natural hydrophilic polymer sericin", Sep. Purif. Technol., 118, 285 (2013).
  11. J. Saqib and I. H. Aljundi, "Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes: State-of-the-art review", J. Water Process Eng., 11, 68 (2016). https://doi.org/10.1016/j.jwpe.2016.03.009
  12. M. Asadollahi, D. Bastani, and S. A. Musavi, "Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review", Desalination, 420, 330 (2017). https://doi.org/10.1016/j.desal.2017.05.027
  13. D. Li, Y. Yan, and H. Wang, "Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes", Prog. Polym. Sci., 61, 104 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.003
  14. C. Y. Tang, Y.-N. Kwon, and J. O. Leckie, "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers", Desalination, 242, 168 (2009). https://doi.org/10.1016/j.desal.2008.04.004
  15. M. Chapman Wilbert, J. Pellegrino, and A. Zydney, "Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes", Desalination, 115, 15 (1998). https://doi.org/10.1016/S0011-9164(98)00022-8
  16. J. S. Louie, I. Pinnau, I. Ciobanu, K. P. Ishida, A. Ng, and M. Reinhard, "Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes", J. Membr. Sci., 280, 762 (2006). https://doi.org/10.1016/j.memsci.2006.02.041
  17. Y. Mansourpanah, S. S. Madaeni, A. Rahimpour, A. Farhadian, and A. H. Taheri, "Formation of appropriate sites on nanofiltration membrane surface for binding $TiO_2$ photo-catalyst: Performance, characterization and fouling-resistant capability", J. Membr. Sci., 330, 297 (2009). https://doi.org/10.1016/j.memsci.2009.01.001
  18. T.-H. Bae and T.-M. Tak, "Preparation of $TiO_2$ self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system", J. Membr. Sci., 266, 1 (2005). https://doi.org/10.1016/j.memsci.2005.08.014
  19. S. Liang, Y. Kang, A. Tiraferri, E. P. Giannelis, X. Huang, and M. Elimelech, "Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles", ACS Appl. Mater. Interfaces, 5, 6694 (2013). https://doi.org/10.1021/am401462e
  20. J. S. Louie, I. Pinnau, and M. Reinhard, "Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes", J. Membr. Sci., 367, 249 (2011).
  21. I. H. Kim, E. H. Ji, J. W. Rhim, and S. I. Cheong, "Studies on the fouling reduction through the coating of poly(vinyl alcohol) on polyamide reverse osmosis membrane surfaces", Membr. J., 22, 272 (2012).
  22. H. Choi, J. Park, T. Tak, and Y.-N. Kwon, "Surface modification of seawater reverse osmosis (SWRO) membrane using methyl methacrylate-hydroxy poly(oxyethylene) methacrylate (MMA-HPOEM) comb-polymer and its performance", Desalination, 291, 1 (2012). https://doi.org/10.1016/j.desal.2012.01.018
  23. R. Muppalla, H. H. Rana, S. Devi, and S. K. Jewrajka, "Adsorption of pH-responsive amphiphilic copolymer micelles and gel on membrane surface as an approach for antifouling coating", Appl. Surf. Sci., 268, 355 (2013). https://doi.org/10.1016/j.apsusc.2012.12.098
  24. J. Nikkola, X. Liu, Y. Li, M. Raulio, H.-L. Alakomi, J. Wei, and C. Y. Tang, "Surface modification of thin film composite RO membrane for enhanced anti-biofouling performance", J. Membr. Sci., 444, 192 (2013).
  25. S. Yu, Z. LU, Z. Chen, X. Liu, M. Liu, and C. Gao, "Surface modification of thin-film composite polyamide reverse osmosis membranes by coating N-isopropylacrylamide-co-acrylic acid copolymers for improved membrane properties", J. Membr. Sci., 371, 293 (2011).
  26. S. Yu, X. Liu, J. Liu, D. Wu, M. Liu, and C. Gao, "Surface modification of thin-film composite polyamide reverse osmosis membranes with thermo-responsive polymer (TRP) for improved fouling resistance and cleaning efficiency", Sep. Purif. Technol., 76, 283 (2011). https://doi.org/10.1016/j.seppur.2010.10.017
  27. H. Karkhanechi, R. Takagi, and H. Matsuyama, "Biofouling resistance of reverse osmosis membrane modified with polydopamine", Desalination, 336, 87 (2014). https://doi.org/10.1016/j.desal.2013.12.033
  28. S. Azari and L. Zou, "Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance", J. Membr. Sci., 401-402, 68 (2012). https://doi.org/10.1016/j.memsci.2012.01.041
  29. C. Zhou, D. Ye, H. Jia, S. Yu, M. Liu, and C. Gao, "Surface mineralization of commercial thin-film composite polyamide membrane by depositing barium sulfate for improved reverse osmosis performance and antifouling property", Desalination, 351, 228 (2014). https://doi.org/10.1016/j.desal.2014.07.040
  30. C. Wang, G. K. Such, A. Widjaya, H. Lomas, G. Stevens, F. Caruso, and S. E. Kentish, "Click poly(ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization", J. Membr. Sci., 409-410, 9 (2012). https://doi.org/10.1016/j.memsci.2012.02.049
  31. H. Karkhanechi, R. Takagi, and H. Matsuyama, "Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization", Desalination, 337, 23 (2014). https://doi.org/10.1016/j.desal.2014.01.007
  32. A. Matin, Z. Khan, K. K. Gleason, M. Khaled, S. M. J. Zaidi, A. Khalil, P. Moni, and R. Yang, "Surface-modified reverse osmosis membranes applying a copolymer film to reduce adhesion of bacteria as a strategy for biofouling control", Sep. Purif. Technol., 124, 117 (2014). https://doi.org/10.1016/j.seppur.2013.12.032
  33. J. Nikkola, J. Sievanen, M. Raulio, J. Wei, J. Vuorinen, and C. Y. Tang, "Surface modification of thin film composite polyamide membrane using atomic layer deposition method", J. Membr. Sci., 450, 174 (2014). https://doi.org/10.1016/j.memsci.2013.09.005
  34. A. Bhattacharya and B. N. Misra, "Grafting: A versatile means to modify polymers: Techniques, factors and applications", Prog. Polym. Sci., 29, 767 (2004). https://doi.org/10.1016/j.progpolymsci.2004.05.002
  35. M. Wang, J. Yuan, X. Huang, X. Cai, L. Li, and J. Shen, "Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGETATRP for improving blood compatibility", Colloid Surf. B-Biointerfaces, 103, 52 (2013). https://doi.org/10.1016/j.colsurfb.2012.10.025
  36. Y. Kwon, S. Hong, H. Choi, J. Jung, J. Moon, and T. Tak, "Development of fouling-resistant RO membranes using PEGA macromer", Desalin. Water Treat., 15, 54 (2010).
  37. K. H. Lee and K. I. Chul, "Preparation of poly(vinyl alcohol)-coated composite nanofiltration membranes on various support membranes", Membr. J., 15, 34 (2005).
  38. L. Ni, J. Meng, X. Li, and Y. Zhang, "Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement", J. Membr. Sci., 451, 205 (2014).
  39. M. Liu, Q. Chen, L. Wang, S. Yu, and C. Gao, "Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA)", Desalination, 367, 11 (2015). https://doi.org/10.1016/j.desal.2015.03.028
  40. S. Kwon, K. Y. Jee, and Y. T. Lee, "Surface modification of reverse osmosis membrane with diphenylamine for improved chlorine and fouling resistance", Membr. J., 23, 439 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.439
  41. S. Belfer, Y. Purinson, R. Fainshtein, Y. Radchenko, and O. Kedem, "Surface modification of commercial composite polyamide reverse osmosis membranes", J. Membr. Sci., 139, 175 (1998). https://doi.org/10.1016/S0376-7388(97)00248-2
  42. Q. Cheng, Y. Zheng, S. Yu, H. Zhu, X. Peng, J. Liu, J. Liu, M. Liu, and C. Gao, "Surface modification of a commercial thin-film composite polyamide reverse osmosis membrane through graft polymerization of N-isopropylacrylamide followed by acrylic acid", J. Membr. Sci., 447, 236 (2013). https://doi.org/10.1016/j.memsci.2013.07.025
  43. J. Meng, Z. Cao, L. Ni, Y. Zhang, X. Wang, X. Zhang, and E. Liu, "A novel salt-responsive TFC RO membrane having superior antifouling and easy-cleaning properties", J. Membr. Sci., 461, 123 (2014). https://doi.org/10.1016/j.memsci.2014.03.017
  44. V. Freger, J. Gilron, and S. Belfer, "TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study", J. Membr. Sci., 209, 283 (2002).
  45. K. Matyjaszewski, "Atom transfer radical polymerization (ATRP): Current status and future perspectives", Macromolecules, 45, 4015 (2012). https://doi.org/10.1021/ma3001719
  46. N. Singh, Z. Chen, N. Tomer, S. R. Wickramasinghe, N. Soice, and S. M. Husson, "Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization", J. Membr. Sci., 311, 225 (2008). https://doi.org/10.1016/j.memsci.2007.12.036
  47. L.-P. Zhu, H.-B. Dong, X.-Z. Wei, Z. Yi, B.-K. Zhu, and Y.-Y. Xu, "Tethering hydrophilic polymer brushes onto PPESK membranes via surface-initiated atom transfer radical polymerization", J. Membr. Sci., 320, 407 (2008).
  48. D. Saeki, T. Tanimoto, and H. Matsuyama, "Anti-biofouling of polyamide reverse osmosis membranes using phosphorylcholine polymer grafted by surface-initiated atom transfer radical polymerization", Desalination, 350, 21 (2014). https://doi.org/10.1016/j.desal.2014.07.004
  49. A. J. Blok, R. Chhasatia, J. Dilag, and A. V. Ellis, "Surface initiated polydopamine grafted poly([2-(methacryoyloxy)ethyl]trimethylammonium chloride) coatings to produce reverse osmosis desalination membranes with anti-biofouling properties", J. Membr. Sci., 468, 216 (2014). https://doi.org/10.1016/j.memsci.2014.06.008
  50. M. Ginic-Markovic, T. G. Barclay, K. T. Constantopoulos, E. Markovic, S. R. Clarke, and J. G. Matisons, "Biofouling resistance of polysulfobetaine coated reverse osmosis membranes", Desalination, 369, 37 (2015). https://doi.org/10.1016/j.desal.2015.04.024
  51. Y. Zhang, Z. Wang, W. Lin, H. Sun, L. Wu, and S. Chen, "A facile method for polyamide membrane modification by poly(sulfobetaine methacrylate) to improve fouling resistance", J. Membr. Sci., 446, 164 (2013). https://doi.org/10.1016/j.memsci.2013.06.013
  52. F. S. Denes and S. Manolache, "Macromolecular plasma-chemistry: An emerging field of polymer science", Prog. Polym. Sci., 29, 815 (2004). https://doi.org/10.1016/j.progpolymsci.2004.05.001
  53. N. H. Lin, M.-m. Kim, G. T. Lewis, and Y. Cohen, "Polymer surface nano-structuring of reverse osmosis membranes for fouling resistance and improved flux performance", J. Mater. Chem., 20, 4642 (2010). https://doi.org/10.1039/b926918e
  54. M. Ulbricht and G. Belfort, "Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone", J. Membr. Sci., 111, 193 (1996). https://doi.org/10.1016/0376-7388(95)00207-3
  55. D. S. Wavhal and E. R. Fisher, "Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling", Langmuir, 19, 79 (2003). https://doi.org/10.1021/la020653o
  56. T. Hong Anh Ngo, D. T. Tran, and C. Hung Dinh, "Surface photochemical graft polymerization of acrylic acid onto polyamide thin film composite membranes", J. Appl. Polym. Sci., 134, 44418 (2017).
  57. B. T. McVerry, M. C. Y. Wong, K. L. Marsh, J. A. T. Temple, C. Marambio-Jones, E. M. V. Hoek, and R. B. Kaner, "Scalable antifouling reverse osmosis membranes utilizing perfluorophenyl azide photochemistry", Macromol. Rapid Commun., 35, 1528 (2014). https://doi.org/10.1002/marc.201400226
  58. H. Ju, B. D. McCloskey, A. C. Sagle, Y.-H. Wu, V. A. Kusuma, and B. D. Freeman, "Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation", J. Membr. Sci., 307, 260 (2008). https://doi.org/10.1016/j.memsci.2007.09.028
  59. M. Ulbricht, H. Matuschewski, A. Oechel, and H.-G. Hicke, "Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-proten-adsorbing ultrafiltration membranes", J. Membr. Sci., 115, 31 (1996). https://doi.org/10.1016/0376-7388(95)00264-2
  60. H. Choi, Y. Jung, S. Han, T. Tak, and Y.-N. Kwon, "Surface modification of SWRO membranes using hydroxyl poly(oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine", J. Membr. Sci., 486, 97 (2015). https://doi.org/10.1016/j.memsci.2015.03.040