DOI QR코드

DOI QR Code

Numerical Analysis and Exploring of Ground Condition during Groundwater Drawdown Environment in Open-cut Type Excavation

개착식 굴착공사시 지하수위 저하로 인한 지반상태 탐사 및 해석기법 연구

  • Han, Yushik (Geotechnical Engrg. Research Institute, Korean Geotechnical Society)
  • 한유식 (한국지반공학회 지반공학연구소)
  • Received : 2018.11.06
  • Accepted : 2018.11.28
  • Published : 2018.11.30

Abstract

Precise investigation and interpretation of the ground subsidence risk factors needed to predict and evaluate the settlement problems of the surrounding ground due to the ground excavation. There are various geophysical exploration methods to investigate the ground subsidence risk factors. However, there are factors that influence the characteristics of the underground medium in these geophysical methods, and the actual soil contains complex factors affecting geophysical exploration. Therefore, it is necessary to analyze the effects on the geophysical methods based on the understanding of the geotechnical properties of soil. In this study, a test bed was constructed to consider various complicated factors in the complex ground and the ground behavior was analyzed by numerical analysis. In addition, we analyzed the limitations on investigating the ground subsidence risk factors through ground penetration radar (GPR) survey. As a result, ground subsidence of Open-cut Type Excavation is caused by various factors. Especially, in the case of soft ground condition, it was found that it was greatly influenced by the flow change of groundwater level. At the center frequency of GPR of 250 MHz, the attenuation of the electromagnetic wave is severely attenuated in the clay with high electrical conductivity, making it difficult to penetrate deeply into the ground (4 m below the surface). As the electromagnetic waves pass through the groundwater level below the groundwater, the attenuation of the electromagnetic waves becomes severe.

지반 굴착에 따른 주변 지반의 침하 문제를 예측하고 평가하기 위해서는 지반침하 위험인자의 정확한 조사와 해석이 필요하다. 지반침하 위험인자를 조사하기 위한 비파괴조사방법에는 여러 가지 물리탐사방법이 있다. 하지만 이러한 물리탐사 방법에는 지하매질 특성에 영향을 미치는 요인들이 있으며, 실제 지반의 토질은 물리탐사에 영향을 주는 복잡한 요소들이 내포하고 있다. 따라서 흙의 공학적 성질에 대한 이해를 바탕으로 한 물리탐사 방법에 미치는 영향을 분석하는 접근이 필요하다. 이 연구에서는 실제 복합지반에서 다양하고 복잡한 요소들을 고려할 수 있도록 Test Bed를 구축하고, 수치해석을 통해 지반거동을 분석하였다. 또한, 지표투과레이더(GPR) 탐사를 통해 지반침하 위험인자 조사를 위한 한계성을 분석하였다. 그 결과, 개착식 굴착공사에 있어서 지반침하는 여러 가지 요인에 따라 발생 할 수 있으며, 특히 연약지반 조건일 경우에는 지하수위 흐름 변화에 큰 영향을 받는 것으로 나타났다. 또한 GPR의 중심주파수 250MHz인 경우, 전기전도도가 높은 점토 지반에서는 전자기파의 감쇠가 심하게 일어나서 땅속 깊은 곳(지표아래 4m)까지의 투과를 어렵게 만들며, 지하수위 아래에서는 지하수면을 전자기파가 통과함에 따라, 전자기파의 감쇠가 심하게 일어나는 것으로 나타났다.

Keywords

GJBGC4_2018_v34n11_93_f0001.png 이미지

Fig. 2. Stress-strain curve showing strain hardening

GJBGC4_2018_v34n11_93_f0002.png 이미지

Fig. 1. Normal consolidation line and overconsolidation curves

GJBGC4_2018_v34n11_93_f0003.png 이미지

Fig. 3. Critical state line and yield curve in p'-q space (Roscoe and Burland, 1968)

GJBGC4_2018_v34n11_93_f0004.png 이미지

Fig. 4. Design for open-cut type excavation

GJBGC4_2018_v34n11_93_f0005.png 이미지

Fig. 5. Modeling of FEA

GJBGC4_2018_v34n11_93_f0006.png 이미지

Fig. 6. Numerical analysis due to variation of critical state line (M)

GJBGC4_2018_v34n11_93_f0007.png 이미지

Fig. 7. Numerical analysis due to variation of Hydraulic Conductivity

GJBGC4_2018_v34n11_93_f0008.png 이미지

Fig. 8. As a result of numerical analysis

GJBGC4_2018_v34n11_93_f0009.png 이미지

Fig. 9. Groundwater changes by excavation stage

GJBGC4_2018_v34n11_93_f0010.png 이미지

Photo. 1. Subsidence for surrounding ground of excavation site

GJBGC4_2018_v34n11_93_f0011.png 이미지

Fig. 10. GPR exploration mode (Reflection mode)

GJBGC4_2018_v34n11_93_f0012.png 이미지

Fig. 11. GPR exploration before excavation

GJBGC4_2018_v34n11_93_f0013.png 이미지

Fig. 12. GPR exploration after excavation

GJBGC4_2018_v34n11_93_f0014.png 이미지

Photo. 2. Measuring the electrical properties of clayey sand

Table 1. Relationship with variables of underground electrical characteristics, GPR Exploration and Frequency

GJBGC4_2018_v34n11_93_t0001.png 이미지

Table 2. Estimated initial parameters of soils and materials

GJBGC4_2018_v34n11_93_t0002.png 이미지

Table 3. Changes of clayey sand parameters for the sensitivity analysis

GJBGC4_2018_v34n11_93_t0003.png 이미지

Table 4. Electrical properties of clayey sand

GJBGC4_2018_v34n11_93_t0004.png 이미지

References

  1. Boit, M.A. (1941), General Theory of Three-dimensional Consolidation, ASCE, Vol.113, pp.718-754.
  2. Decagon Devices, Inc. (2016), GS3 Water Content, EC and Temperature Sensors Operator's Manual, pp.9.
  3. Endres, A. L., Clement, W. P., and Rudolph, D. L. (2000), Ground Penetrating radar imaging of an aquifer during a pumping test, Ground Water, 38, pp.566-576. https://doi.org/10.1111/j.1745-6584.2000.tb00249.x
  4. Hagrey, S. A. and Müller, C. (2000), GPR study of pore water content and salinity in sand, Geophysical Prospecting, 48, pp.63-85. https://doi.org/10.1046/j.1365-2478.2000.00180.x
  5. Kim, B. W. and Kim, H. S. (2013), Estimation of Groundwater Table using Ground Penetration Radar (GPR) in a Sand Tank Model and at an Alluvial Field Site, The Journal of Engineering Geology, 23, pp.201-216. https://doi.org/10.9720/kseg.2013.3.201
  6. KISTEC (2010), A research for establishing safety management standards on neighboring facilities in accordance with ground excavation, Korea Infrastructure Safety & Technology Corporation, pp.77-214.
  7. Korean Society of Earth and Exploration Geophysicists (2011), Practical Guidelines for Geophysical Exploration Hanrimwon, pp. 397 (In Korean).
  8. Kuroda, S., Jang, H., and Kim, H. J. (2009), Time-lapse borehole rata monitoring of an infiltration experiment in the vadose zone, Journal of Applied Geophysics, 67, pp.361-366. https://doi.org/10.1016/j.jappgeo.2008.07.005
  9. Lambe, T. W. (1958), The engineering behavior of compacted clay, J. Soil Mech. Found. Div., ASCE, 84, No.SM2, pp.1-34.
  10. Lu, Q. and Sato, M. (2004), Estimation of hydraulic property of unconfined aquifer by GPR, Proceedings of the Tenth International Conference on, pp.715-718.
  11. MIDAS Information Technology Co., Ltd. (2015), GTS NX V250 - Online Manual (In Korean).
  12. NAVFC (1971), Design Manual-Soil Mechanics, Foundation, and Earth structures, NAVFAC DM-7, U.S. Department of the Navy, Washington D.C.
  13. Pyke, K., Eyuboglu, S., Daniels, J. J., and Vendl, M. (2008), A Controlled Experiment to Determine the Water Table Response Using Ground Penetrating Radar, Journal of Environmental and Engineering Geophysics, 13, pp.335-342. https://doi.org/10.2113/JEEG13.4.335
  14. Rosco, K.H. and Schofield, A.N. (1963), Mechanical Behavior of an Idealized Wet Clays, Proc. 2nd European Conf. Soil Mech, Wiebaden, Vol.1, pp.47-54.
  15. Rosco, K.H. and Burland, J. B. (1968), On the generalized stressstrain behaviour of wet clay, Engineering Plasticity, Cambridge Univ. Press, pp.535-609.
  16. Han, Y. and Yoo, K.C. (2017), A Study on the Change of Electrical Characteristics of Sand, Journal of Korean Society of Disaster & Security, Vol.10, No.1, pp.61-66 (In Korean). https://doi.org/10.21729/KSDS.2017.10.1.61
  17. Han, Y. (2018), Proposal of the Development Direction on the Special Act on Underground Safety Management for Preparation of the Proactive Underground Safety Management System, Journal of the Korean Geotechnical Society, Vol.34, No.7, pp.17-27 (In Korean). https://doi.org/10.7843/KGS.2018.34.7.17