DOI QR코드

DOI QR Code

The effect of micro parameters of PFC software on the model calibration

  • Ajamzadeh, M.R. (Department of Mining Engineering, Hamedan University of Technology) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Haeri, Hadi (Bafgh Branch, Islamic Azad University) ;
  • Dehghani, H. (Hamedan University of Technology)
  • Received : 2018.07.10
  • Accepted : 2018.11.22
  • Published : 2018.12.25

Abstract

One of the methods for investigation of mechanical behavior of materials is numerical simulation. For simulation, its need to model behavior is close to real condition. PFC is one of the rock mechanics software that needs calibration for models simulation. The calibration was performed based on simulation of unconfined compression test and Brazilian test. Indeed the micro parameter of models change so that the UCS and Brazilian test results in numerical simulation be close to experimental one. In this paper, the effect of four micro parameters has been investigated on the uniaxial compression test and Brazilian test. These micro parameters are friction angle, Accumulation factor, expansion coefficient and disc distance. The results show that these micro parameters affect the failure pattern in UCS and Brazilian test. Also compressive strength and tensile strength are controlled by failure pattern.

Keywords

References

  1. Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78.
  2. Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225, DOI 10.1016/j.compgeo.2012.10.012.
  3. Bahaaddini, M., Hagan, P.C., Mitra, R. and Khosravi, M.H. (2016), "Experimental and numerical study of asperity degradation in the direct shear test", Eng. Geology, 204, 41-52. https://doi.org/10.1016/j.enggeo.2016.01.018
  4. Bahrani, N., Valley, B.K. and Kaiser, P. (2015), "Numerical simulation of drilling-induced core damage and its influence on mechanical properties of rocks under unconfined condition", Int. J. Rock Mech. Min. Sci., 80, 40-50. https://doi.org/10.1016/j.ijrmms.2015.09.002
  5. Bock, S. and Prusek, S. (2015), "Numerical study of pressure on dams in a backflled mining shaf based on PFC3D code", Comput. Geotech., 66, 230-244. https://doi.org/10.1016/j.compgeo.2015.02.005
  6. Cho, N., Martin, C. and Sego, D. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  7. Cundall, P. (1987), Distinct element models of rock and soil structure. (Ed., Brown E.T.) Analytical and computational methods in engineering rock mechanics, Allen & Unwin, London, 129-163
  8. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  9. Fan, X., Kulatilake, P.H.S.W. and Chen, X. (2015), "Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: a particle mechanics approach", Eng. Geol., 190, 17-32. https://doi.org/10.1016/j.enggeo.2015.02.008
  10. Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Solids, 22, 1205-1218.
  11. Fu, Y. (2005), "Experimental quantification and DEM simulation of micro-macro behaviors of granular materials using X-ray tomography imaging", Ph.D. thesis, Louisiana State University
  12. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Studies Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  13. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar nonpersistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
  14. Ghazvinian, E., Kalenchuk, K.S. and Diederichs, M.S. (2017), "Three-dimensional random Voronoi models for simulation of brittle rock damage around underground excavations in laminated ground", Deep Mining, Perth, Australia.
  15. Haeri, H. (2015), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions", Strength Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
  16. Haeri, H. and Sarfarazi, V. (2016a), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/CAC.2016.17.6.723
  17. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  18. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
  19. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/CAC.2016.17.5.639
  20. Haeri, H. and Sarfarazi, V. (2016b), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-127. https://doi.org/10.12989/CAC.2016.17.1.107
  21. Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the ICF13.
  22. Hofmann, H., Babadagli, T., Yoon, J.S., Blocher, G. and Zimmermann, G. (2016), "A hybrid discrete/finite element modeling study of complex hydraulic fracture development for enhanced geothermal systems (EGS) in granitic basements", Geothermics, 64, 362-381. https://doi.org/10.1016/j.geothermics.2016.06.016
  23. Hofmann, H., Babadagli, T., Yoon, J.S., Zang, A. and Zimmermann, G. (2015), "A grain based modeling study of mineralogical factors affecting strength, elastic behavior and micro fracture development during compression tests in granites", Eng. Fract. Mech,, 147, 261-275. https://doi.org/10.1016/j.engfracmech.2015.09.008
  24. Huang, H. (1999), "Discrete element modeling of tool-rock interaction", Ph.D. thesis, University of Minnesota, Minneapolis, MN
  25. Imani, M., Nejati, H.R. and Goshtasbi, K. (2017), "Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate", Soil Dyn. Earthq. Eng., 100, 261-269. https://doi.org/10.1016/j.soildyn.2017.06.007
  26. Jing, L. (2003), "A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering", Int. J. Rock Mech. Min. Sci., 40(3), 283-353. doi:10. 1016/s1365-1609(03)00013-3 https://doi.org/10.1016/S1365-1609(03)00013-3
  27. Jong, Y.H. and Lee, C.G. (2006), "Suggested method for determining a complete set of micro-parameters quantitatively in PFC2D", Tunn. Undergr. Sp., 16(4), 334-346.
  28. Khazaei, C., Hazzard, J. and Chalaturnyk, R. (2015), "Damage quantifcation of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling", Comput. Geotech., 67, 94-102. https://doi.org/10.1016/j.compgeo.2015.02.012
  29. Khodayar, A. and Nejati, H.R.(2018), "Effect of thermal-induced microcracks on the failure mechanism of rock specimens", Comput. Concrete, 22(1), 93-100. https://doi.org/10.12989/CAC.2018.22.1.093
  30. Kim, H.M., Lee, J.W., Yazdani, M., Tohidi, E., Nejati, H.R. and Park, E.S. (2018), "E.-S coupled viscous fluid flow and joint deformation analysis for grout injection in a rock joint", Rock Mech. Rock Eng., 51(2), 627-638. https://doi.org/10.1007/s00603-017-1339-3
  31. Koyama, T. and Jing, L. (2007), "Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-a particle mechanics approach", Eng. Anal. Bound. Elem., 31(5), 458-472. https://doi.org/10.1016/j.enganabound.2006.11.009
  32. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  33. Lee, H., Moon, T. and Haimson, B.C. (2016), "Borehole breakouts induced in Arkosic sandstones and a discrete element analysis," Rock Mech. Rock Eng., 49(4), 1369-1388. https://doi.org/10.1007/s00603-015-0812-0
  34. Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286. https://doi.org/10.12989/SEM.2015.53.6.1271
  35. Li, X., Wang, S.H., Malekian, R., Hao, S.H. and Li, Z.H. (2016), "Numerical simulation of rock breakage modes under confining pressures in deep mining: An experimental investigation", IEEE Access, Digital Object Identifier 10.1109/ACCESS.2016.2608384.
  36. Li, S.H., Li, D., Cao, L. and Shangguan, Z. (2014), "Parameter estimation approach for particle flow model of rockfill materials using response surface method", ICCM, 28-30th July, Cambridge, England.
  37. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 82, 421-431. https://doi.org/10.1016/j.measurement.2016.01.017
  38. Lin, C.H. and Lin, M.L. (2015), "Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method", Eng. Geol., 197, 172-187. https://doi.org/10.1016/j.enggeo.2015.08.022
  39. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Studies Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  40. Lu, F.Y., Lin, Y.L., Wang, X.Y., Lu, L. and Chen, R. (2015), "A theoretical analysis about the influence of interfacial friction in SHPB tests", Int. J. Impact Eng., 79, 95-101. https://doi.org/10.1016/j.ijimpeng.2014.10.008
  41. Mehranpour, M.H., Kulatilake, P.H.S.W. (2016), "Comparison of six major intact rock failure criteria using a particle flow approach under true-triaxial stress condition", Geomech. Geophys. Geo-Energy Geo-Resources, 2, 203-229. https://doi.org/10.1007/s40948-016-0030-6
  42. Mobasher, B., Bakhshi, M and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253, 2014.
  43. Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra-high performance mortar using response surface method", Comput. Concrete, 17(4), 33-39.
  44. Morgan, S., Johnson, A.A. and Einstein, H.H. (2013), "Cracking processes in Barre granite: fracture process zones and crack coalescence", Int. J. Fracture, 180, 177-204. https://doi.org/10.1007/s10704-013-9810-y
  45. Najigivi, A., Nazerigivi, A. and Nejati, H.R. (2017), "Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review", Comput. Concrete, 20(2), 155-164. https://doi.org/10.12989/CAC.2017.20.2.155
  46. Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2018), "Effects of SiO2 nanoparticles dispersion on concrete fracture toughness", Constr. Build. Mater., 171(20), 672-679. https://doi.org/10.1016/j.conbuildmat.2018.03.224
  47. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  48. Oetomo, J.J., Vincens, E., Dedecker, F. and Morel, J.C. (2016), "Modeling the 2D behavior of dry-stone retaining walls by a fully discrete element method", Int. J. Numer. Anal. Meth. Geomech., 40(7), 1099-1120. https://doi.org/10.1002/nag.2480
  49. Oliaei, M. and Manaf, E. (2015), "Static analysis of interaction between twin-tunnels using discrete element method (DEM)", Scientia Iranica, 22(6), 1964-1971.
  50. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  51. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4), 167-181.
  52. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. doi:10.1016/j. ijrmms.2004.09.011
  53. Potyondy, D. (2015), Material-Modeling Support in PFC 2015. Itasca Consuling Groupe, Inc.
  54. Potyondy, D. and Cundall, P. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  55. Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
  56. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
  57. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/CAC.2016.17.4.489
  58. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016b), "The effect of non-persistent joints on sliding direction of rock Slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/CAC.2016.17.6.723
  59. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  60. Sarfarazi, V. and Haeri, H. (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370
  61. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016), "The effect of non-persistent joints on sliding direction if rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/CAC.2016.17.6.723
  62. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/CAC.2016.17.6.739
  63. Silva, R.V., Brito, J. and Dhir. R.K. (2015), "Tensil strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  64. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  65. Turichshev, A. and Hadjigeorgiou, J. (2015), "Experimental and numerical investigations into the strength of intact veined rock", Rock Mech. Rock Eng., 48(5), 1897-1912. https://doi.org/10.1007/s00603-014-0690-x
  66. Vallejos, J.A., Suzuki, K., Brzovic, A. and Ivars, D.M. (2015), "Application of synthetic rock mass modeling to veined coresize samples", Int. J. Rock Mech. Min. Sci., 81, 47-61,
  67. Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Procedia - Social and Behavioral Sciences, 198, 2280-2289.
  68. Wang, M. and Cao, P. (2017), "Calibrating the micromechanical parameters of the PFC2D(3D) models using the improved simulated annealing algorithm", Math. Probl. Eng.
  69. Wang, P., Yang, T., Xu, T., Cai, M. and Li, C. (2016), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549. https://doi.org/10.1007/s12303-015-0070-x
  70. Wang, Y. and Tonon, F. (2009), "Modeling Lac du Bonnet granite using a discrete element model", Int. J. Rock Mech. Min. Sci., 46(7), 1124-1135 https://doi.org/10.1016/j.ijrmms.2009.05.008
  71. Wang, Y. and Tonon, F. (2010), "Calibration of a discrete element model for intact rock up to its peak strength", Int. J. Numer. Anal. Method. Geomech., 34(5), 447-469. doi:10.1002/nag.811
  72. Wang, Z., Jacobs, F. and Ziegler, M. (2016), "Experimental and DEM investigation of geogrid-soil interaction under pullout loads", Geotextiles and Geomembranes, 44(3), 230-246. https://doi.org/10.1016/j.geotexmem.2015.11.001
  73. Wang, T., Dai, J.G. and Zheng, J.J. (2015), "Multi-angle truss model for predicting the shear deformation of RC beams with low span-effective depth ratios", Eng. Struct., 91, 85-95. https://doi.org/10.1016/j.engstruct.2015.02.035
  74. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  75. Wen, Z.J., Wang, X. and Li, Q.H. (2016), "Simulation analysis on the strength and acoustic emission characteristics of jointed rock mass", Technical Gazette, 23(5), 1277-1284.
  76. Wu, Z.J., Ngai, L. and Wong, Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using numerical manifold method", Constr. Build. Mater., 72, 72-82 https://doi.org/10.1016/j.conbuildmat.2014.08.082
  77. Yan, Y. and Ji, S, (2010), "Discrete element modeling of direct shear tests for a granular material", Int. J. Numer. Anal. Meth. Geomech., 34(9), 978-990. doi:10.1002/nag.848
  78. Yang, S.Q., Tian, W.L., Huang, Y.H., Ranjith, P.G. and Ju, Y. (2016), "An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fssures under uniaxial compression", Rock Mech. Rock Eng., 49 (4), 1497-1515. https://doi.org/10.1007/s00603-015-0838-3
  79. Yang, X., Kulatilake, P.H.S.W., Jing, H. and Yang, S. (2015), "Numerical simulation of a jointed rock block mechanical behavior adjacent to an underground excavation and comparison with physical model test results", Tunn. Undergr. Sp. Tech., 50, 129-142. https://doi.org/10.1016/j.tust.2015.07.006
  80. Yao, W., Hu, B., Li, L., Chen, X. and Rao, C.H. (2016), "Particle flow simulation of the direct shear tests on the weak structural surface", Electronic J. Geotech. Eng., 21.
  81. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6).
  82. Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation", Int. J. Rock Mech. Min. Sci., 44, 871-889 https://doi.org/10.1016/j.ijrmms.2007.01.004
  83. Zhang, Q., Zhu, H., Zhang, L. and Ding, X. (2011), "Study of scale effect on intact rock strength using particle flow modeling", Int. J. Rock Mech. Min. Sci., 48(8), 1320-1328. doi:10.1016/j.ijrmms.2011.09.016
  84. Zhang, Q., Zhu, H.H. and Zhang, L. (2015), "Studying the effect of non-spherical micro-particles on Hoek-Brown strength parameter mi using numerical true triaxial compressive tests", Int. J. Numer. Anal. Meth. Geomech., 39(1), 96-114. https://doi.org/10.1002/nag.2310
  85. Zhang, X.P. and Wong, L. (2012), "Cracking processes in rocklike material containing a single flaw under uniaxial compression: a numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45(5), 711-737. doi:10.1007/s00603-011-0176-z
  86. Zhao, Y., Zhao, GF. and Jiang, Y. (2013), "Experimental and numerical modelling investigation on fracturing in coal under impact loads", Int. J. Fracture, 183(1), 63-80. https://doi.org/10.1007/s10704-013-9876-6
  87. Zhou, M. and Song, E. (2016), "A random virtual crack DEM model for creep behavior of rockfll based on the subcritical crack propagation theory", Acta Geotech., 11(4), 827-847. https://doi.org/10.1007/s11440-016-0446-8

Cited by

  1. Numerical Investigation of Injection-Induced Fracture Propagation in Brittle Rocks with Two Injection Wells by a Modified Fluid-Mechanical Coupling Model vol.13, pp.18, 2018, https://doi.org/10.3390/en13184718
  2. Study on the propagation mechanism of blast waves using the ultra-dynamic strain test system vol.28, pp.1, 2018, https://doi.org/10.12989/sss.2021.28.1.143
  3. Study on mechanical behavior and damage process of concrete with initial damage under eccentric load vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-95964-x