DOI QR코드

DOI QR Code

The Distribution and Diversity of Freshwater Fishes in Korean Peninsula

한반도 담수어류의 분포와 다양성

  • Received : 2018.01.05
  • Accepted : 2018.03.15
  • Published : 2018.03.31

Abstract

A recent topic of interest within ecology is ecosystem services that are importantly connected with biodiversity. Biodiversity is a fundamental component of ecological studies and has been the subject of many studies worldwide. However, studies on the diversity and distribution of freshwater fish were not undertaken in earnest until 2000, and the number of internationally available studies is therefore still limited. In this study, we used data from "The Survey and Evaluation of Aquatic Ecosystem Health (hereafter SEAEH)" within the framework of which whole water systems on the Korean peninsula are annually monitored to investigate and determine the current status of the diversity and distribution of freshwater fish, as well as to elucidate major factors impacting freshwater fish. A total of 130 species from 28 families were identified at around 953 sites in the SEAEH investigation of 2014. The species Zacco platypus (relative abundance: 28.2%) and Z. koreanus (19.3%) were identified as the most abundant species on the Korean peninsula, and besides these 20 endangered species, 51 endemic species and 4 exotic species were also collected. Highest (96 species) and lowest (72 species) diversity were identified in the Han River Watershed and the Yeongsan/Seomjin River Watershed, respectively. The mean endemic rate was 32.7%, which is higher than the previous rate determined in 1995. The exotic species Micropterus salmoides, Lepomis macrochirus and Carassius cuvieri were found in the whole river system except north Yeongdong, whereas Oreochromis niloticus occurred only at three sites due to the cold water temperatures in winter. Totally, 28 species were found to be translocated to different water systems not connected with known original habitats, most translocations occurring in the Nakdong River and the Yeongdong region. Among the translocated species, Opsariichthys uncirostris amurensis, and Erythroculter erythropterus were dominantly distributed in the mid- to lower reaches of Nakdong River where they may be harmful to the native fish assemblages due to their strong predation. The construction of weirs in connection with the "4 River Project" generated changes in fish assemblages before, during and after the project, resulting in altered habitat condition. Especially, a decrease in the number of endemic species and an increase in the abundance of lentic species were seen. Human-induced global warming will allow exotic species requiring high water temperatures to adapt to the environmental conditions of the Korean peninsula, which may enhance the diversity of native fishes and create changes in distribution. For the establishment of realistic and efficient management and protection strategies for Korean freshwater fish, SEAEH, which produces fundamental and quantitative data for Korean streams, is an important and necessary tool.

최근 생물 다양성이 생태계의 기능과 서비스 측면에서 강조되면서 생물 분류군별 다양성 및 분포 파악에 대한 연구가 중요한 이슈가 되고 있다. 국내 담수어류의 분포 및 다양성에 관한 연구는 2000년대에 들어서서 본격적으로 수행되고 있으나 아직까지도 전국적인 분포 및 다양성에 대한 분석은 이루어지지 않고 있다. 이에 본 연구는 한반도 남한지역 전 수계를 대상으로 동시에 모니터링하는 "수생태계 현황 조사 및 건강성 평가"의 자료를 활용하여 국내에 서식하는 담수어류의 분포 및 다양성을 파악하고, 더불어 국내 담수어류의 다양성에 영향을 줄 수 있는 주요 요인들을 제시하였다. 전국 953개 지점에 대한 수생태계 건강성 조사 (2014년 결과 활용) 결과 총 28과 130종의 담수어류가 서식하는 것으로 확인되었다. 전체 지점에서 우점종은 피라미 (Zacco platypus, 상대풍부도, 28.2%)와 참갈겨니(Zacco koreanus, 19.3%)였으며, 20종의 멸종위기종, 51종의 고유종, 4종의 외래종이 출현하였다. 대권역별 비교 시 한강 대권역에서 가장 많은 96종이 확인되어 다양성이 높았으며, 영산/섬진강 대권역에서 가장 적은 72종이 확인되어 다양성이 낮게 나타났다. 본 연구에서 파악된 수계별 평균 고유화 빈도는 32.7%였고 이는 과거 결과와 비교하여 증가한 수치였다. 외래종인 배스 (Micropterus salmoides), 블루길 (Lepomis macrochirus), 떡붕어 (Carassius cuvieri)는 동해안 수계를 제외한 전역에 확산되어 분포하는 것으로 나타났으며, 나일틸라피아 (Oreochromis niloticus)는 3지점에서만 출현하여 현재까지 국내 수계에 적응하지 못한 것으로 파악되었다. 또한 28종의 이입종이 확인되었고 이들의 대부분은 낙동강 및 영동지역 수계로의 이입이었다. 이 중 끄리 (Opsariichthys uncirostris amurensis), 강준치 (Erythroculter erythropterus)는 낙동강 중 하류에서 우점적으로 출현할 만큼 확산이 이루어졌으며, 이들은 외래종 못지 않은 포식압으로 이입된 수계에 영향을 미치고 있을 것으로 판단된다. 또한 4대강 공사로 인해 공사 전/중/후의 어류군집이 달라진 것이 확인되었는데, 특히 물리적인 서식 환경의 변화로 인해 고유종의 감소와 정수성 어종의 증가가 확인되었다. 인간의 직접적인 영향과 더불어 간접영향으로 나타나는 지구온난화는 장기적으로 국내 수계에 현재까지 적응하지 못한 외래종들의 정착을 가능하게 하면서 담수어류 다양성 및 분포 변화를 가속화 시킬 것으로 예상된다. 따라서 국내 상황에 맞는 실질적이면서 효과적인 담수어류의 관리 및 보호 방안 수립이 이루어져야 하며, 이러한 측면에서 전국을 토대로 기초적이고 정량적인 자료가 도출되는 "수생태계 현황 조사 및 건강성 평가"와 같은 연구가 중요하게 활용될 수 있을 것이다.

Keywords

References

  1. Anderson, M.J. 2005. PERMANOVA: a FORTRAN Computer Program for Permutational Multivariate Analysis of Aariance. Department of Statistics, University of Auckland, Auckland.
  2. Argent, D.G. and R.F. Carline. 2004. Fish assemblage changes in relation to watershed landuse disturbance. Aquatic Ecosystem Health and Management 7: 101-104. https://doi.org/10.1080/14634980490281407
  3. Balvaera, P., A.B. Pfisterer, N. Buchmann, J.S. He, T. Nakashizuka, D. Raffaelli and B. Schmid. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters 9: 1146-1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x
  4. Baron, J.S., N.L. Poff, P.L. Angermeier, C.N. Dahm, P.H. Gleick, N.G. Hairston, R.B. Jackson, G.A. Johnston, B.D. Richter and A.D. Steinman. 2002. Meeting ecological and social needs for freshwater. Ecological Applications 12: 1247-1260. https://doi.org/10.1890/1051-0761(2002)012[1247:MEASNF]2.0.CO;2
  5. Bruton, M.N. 1995. Have fishes had their chips? The dilemma of threatened fishes. Environmental Biology of Fishes 43: 1-27.
  6. Buisson, L., W. Thuiller, S. Lek, P. Lim and G. Grenouillet. 2008. Climate change hastens the turnover of stream fish assemblages. Global Change Biology 14: 2232-2248. https://doi.org/10.1111/j.1365-2486.2008.01657.x
  7. Bullock, J.M., K.H. Hodder, S.J. Manchester and M.J. Stevenson. 1997. Review of Information, Policy and Legislation on Species Translocation. JNCC Report 261. Joint Nature Conservation Committee, Peterborough.
  8. Cardinale, B.J., D.S. Srivastava, J.E. Duffy, J.P. Wright, A.L. Downing, M. Sankaran and C. Jouseau 2006. Effects of biodiversity on the functioning of graphic groups and ecosystems. Nature 443: 989-992. https://doi.org/10.1038/nature05202
  9. Chae, B.S., S.K. Kim, Y.H. Kang, N.S. Heo, J.M. Park, H.U. Ha and U.W. Hwang. 2015. Ichthyofauna and fish community structure in upper reach of the Nakdong River, Korea. Korean Journal of Ichthyology 27: 116-132.
  10. Cho, H.S. 2007. Http://www.hani.co.kr/arti/society/environment/184181.html.
  11. Cho, H.S. 2014. Http://ecotopia.hani.co.kr/188673.
  12. Choi, K.C. 1973. On the geographical distribution of freshwater fishes south of DMZ in Korea. Korean Journal of Limnology 6(3-4): 29-36.
  13. Choi, K.C. 1986. Nature of Gangwon Province, Freshwater Fishes. Gangwon Province Education Committee.
  14. Clarke, K.R. and W.M. Warwick. 1994. Similarity-based testing for community pattern: the 2-way layout with no replication. Marine Biology 118: 167-176. https://doi.org/10.1007/BF00699231
  15. Covich, A.P., K.C. Ewel, R.O. Hall, P.E. Giller, W. Goedkoop and D.M. Merritt. 2004a. Ecosystem services provided by freshwater benthos, p. 45-72. In: Sustaining Biodiversity and Ecosystem Services in Soil and Sediments (Wall, D.H., ed.). Island Press, Washington D.C.
  16. Covich, A.P., M.C. Austen, F. Bärlocher, E. Chauvet, B.J. Cardinale, C.L. Biles, P. Inchausti, O. Dangles, M. Solan, M.O. Gessner, B. Statzner and B.R. Moss. 2004b. The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. BioScience 54: 767-775. https://doi.org/10.1641/0006-3568(2004)054[0767:TROBIT]2.0.CO;2
  17. Cowx, I.G. 1997. Introduction of fish species into European fresh waters: economic successes or ecological disasters? Bulletin Francais de la Peche et de la Pisciculture 344-345: 57-78.
  18. Department of the Environment and Energy. 2008. An Overview of Translocated Native Fish Species in Australia. Australian Government.
  19. Detenbeck, N.E., P.W. DeVore, G.J. Niemi and A. Lima. 1992. Recovery of temperate-stream fish communities from disturbance: a review of case studies and synthesis of theory. Environmental Management 16: 33-53. https://doi.org/10.1007/BF02393907
  20. Dudgeon, D., A.H. Arthington, M.O. Gessner, Z.I. Kawabata, D.J. Knowler, C. Leveque, R.J. Naiman, A.H. Prieur-Richard, D. Soto, M.L.J. Stiassny and C.A. Sullivan. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163-182. https://doi.org/10.1017/S1464793105006950
  21. Duffy, J.E. 2009. Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment 7: 437-444. https://doi.org/10.1890/070195
  22. Eaton, G.J. and R.M. Scheller. 1996. Effects of Climate Warming on Fish Thermal Habitat in Streams of the United States. Limnology and Oceanography 41: 1109-1115. https://doi.org/10.4319/lo.1996.41.5.1109
  23. Elvira, B. and A. Almodovar. 2001. Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. Journal of Fish Biology 59: 323-331. https://doi.org/10.1111/j.1095-8649.2001.tb01393.x
  24. Fagan, W.F. 2002. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83: 3243-3249. https://doi.org/10.1890/0012-9658(2002)083[3243:CFAERI]2.0.CO;2
  25. Field, J.G., K.R. Clarke and M. Warwick. 1982. A practical strategy for analyzing multi-species distribution patterns. Marine Ecology Progress Series 8: 37-53. https://doi.org/10.3354/meps008037
  26. Finkenbine, J.K., J.W. Atwater and D.S. Mavinic. 2000. Stream health after urbanization. Journal American Water Resource Association 36: 1149-1160. https://doi.org/10.1111/j.1752-1688.2000.tb05717.x
  27. Gamfeldt, L., H. Hillebrand and P.R. Honsson. 2008. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89: 1223-1231. https://doi.org/10.1890/06-2091.1
  28. Geum River Watershed Management Committee. 2016. Monitoring on Aquatic Ecosystem to Capture of Largemouth Bass (Micropterus salmoides).
  29. Gido, K.B. and J.H. Brown. 1999. Invasion of North American drainages by alien fish species. Freshwater Biology 42: 387-399. https://doi.org/10.1046/j.1365-2427.1999.444490.x
  30. Heino, J., R. Virkkala and H. Toivonen, H. 2009. Climate changes and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39-54. https://doi.org/10.1111/j.1469-185X.2008.00060.x
  31. Hong, Y.P. and K.S. Park. 2002. Sangju.Mungyeong, Freshwater Fish around Mt. Jakyak. 2nd Natural Environment Survey.
  32. Isaak, D.J., C.H. Luce, B.E. Rieman, D.E. Nagel, E.E. Peterson, D.L. Horan, S. Parkers and G.L. Chandler. 2010. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. Ecological Applications 20: 1350-1371. https://doi.org/10.1890/09-0822.1
  33. IUCN/Species Survival Commission. 1987. IUCN Position Statement on Translocation of Living Organism.
  34. Jang, M.H., G.I. Cho and G.J. Joo. 2001. Fish fauna of the main channel in the Nakdong River. Korean Journal of Limnology 34: 223-238.
  35. Jang, M.H., G.J. Joo and M.C. Lucas. 2006. Diet of introduced largemouth bass in Korean rivers and potential interactions with native fishes. Ecology of Freshwater Fishes 15: 315-320. https://doi.org/10.1111/j.1600-0633.2006.00161.x
  36. Jeon, S.R. 1999. First record of the Opsariichthys uncirostris amurensis (Pisces: Cyprinidae) from Panbyon-river of Naktong-river system, Korea. Korean Journal of Environmental Biology 17: 499-501.
  37. Jeon, S.R. and K. Watanabe. 1995. A study on the distribution of the bagrid fish (Family Bagride) from Naktong River, Korea. Journal of Basic Science 8: 1-18.
  38. Jo, H.B., J.A. Gim, K.S. Jeong, H.S. Kim and G.J. Joo. 2014. Application of DNA barcoding for identification of freshwater carnivorous fish diets: Is number of prey items dependent on size class for Micropterus salmoides? Ecology and Evolution 4: 219-229. https://doi.org/10.1002/ece3.921
  39. Joo, G.J., D.K. Kim, J.D. Yoon and K.S. Jeong. 2008. Climate changes and freshwater ecosystems in South Korea. Journal of Korean Society of Environmental Engineers 30: 1190-1196.
  40. Kang, Y.H., J.W. Seo, J.D. Keum and H.J. Yang. 2004. The fish community structure in the middle of Nakdong River. Korean Journal of Limnology 37: 227-235.
  41. Kim, I.S. and J.Y. Park. 2002. Freshwater Fishes of Korea. Kyo-Hak Publishing Co. Seoul.
  42. Kim, I.S., Y. Choi, C.Y. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated Book of Korean Fishes. Kyo-Hak Publishing Co. Seoul.
  43. Lee, J.W., J.H. Kim, S.H. Park, K.R. Choi, H.J. Lee, J.D. Yoon and M.H. Jang. 2013. Impact of largemouth bass (Micropterus salmoides) on the population of Korean native fish, crucian carp (Carassius auratus). Korean Journal of Environmental Biology 31: 370-375. https://doi.org/10.11626/KJEB.2013.31.4.370
  44. Lindberg, G.U. 1972. Large-scaled fluctuation of sea level in the Quaternary Period. Nauka. Moscow (in Russian).
  45. Matthews, W.J. 1998. Patterns in Freshwater Fish Ecology. New York, NY: Chapman and Hall.
  46. MOE. 2007. Study of Guideline for Translocation of Animal and Plant in Wild Ecosystem. The Ministry of Environment, Korea.
  47. MOE/NIBR. 2013. Endemic Species of Korea. National Institute of Biological Resources. Incheon.
  48. MOE/NIER. 2008-2016. The Survey and Evaluation of Aquatic Ecosystem Health in Korea, The Ministry of Environment/National Institute of Environmental Research, Korea.
  49. Mohseni, O., H.G. Stefan and J.G. Eaton. 2003. Global warming and potential changes in fish habitat in U.S. streams. Climatic Change 59: 389-409. https://doi.org/10.1023/A:1024847723344
  50. Moyle, P.B. 1997. The importance of an historical perspective: fish introductions. Fisheries 22: 14-18.
  51. Naeem, S., D.E. Bunker, A. Hector, M. Loreau and C. Perrings. 2009. Introduction: the ecological and social implications of changing biodiversity. An overview of biodiversity and ecosystem functioning research, p. 3-13. In: Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (Naeem, S., D.E. Bunker, A. Hector, M. Loreau and C. Perrings, eds.). Oxford University Press, Oxford.
  52. Nakdong River Environment Research Center. 2005. Research for Water Quality and Freshwater Fish Ecology in the Nakdong River Watershed.
  53. Nakdong River Watershed Management Committee. 2010. Research on the Effect of Weir Construction on Fresh Water Ecosystem.
  54. Nakdong River Watershed Management Committee. 2013. Research on the Effect of Weir Construction on Fresh Water Ecosystem.
  55. Nelson, J. 2016. Fishes of the World 3rd. John Wiley and Sons, New York.
  56. Nilsson, C., C.A. Reidy, M. Dynesius and C. Revenga. 2005. Fragmentation and flow regulation of the word’s large river systems. Science 308: 405-408. https://doi.org/10.1126/science.1107887
  57. Nishimura, S. 1974. Origin and History of the Japan Sea: An Approach from Biogeographic Standpoint, Tsukiji Shokan. Tokyo (in Japanese).
  58. Okazaki, T., S.R. Jeon and T. Kitagawa. 2002. Genetic differentiation of piscivorous chub (genus Opsariichthys) in Japan, Korea and Russia. Zoological Science 19: 601-610. https://doi.org/10.2108/zsj.19.601
  59. Olden, J.D., N.L. Poff, M.R. Douglas, M.E. Douglas and K.D. Fausch. 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution 19: 18-24. https://doi.org/10.1016/j.tree.2003.09.010
  60. Parker, I.M., D. Simberloff, W.M. Lonsdale, K. Goodell, M. Wonham, P.M. Kareiva, M.H. Williamson, B. Von Holle, P.B. Moyle, J.E. Byers and L. Goldwasser. 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1: 3-19. https://doi.org/10.1023/A:1010034312781
  61. Poff, N.L., M.M. Brinson and J.W. Day. 2002. Aquatic Ecosystems and Global Climate Change. Potential Impacts on Inland Freshwater and Coastal Wetland Ecosystems in the United States. Pew Center on Global Climate Change, Arlington.
  62. Rahel, F.J., C.J. Keleher and J.L. Anderson. 1996. Potential habitat loss and population fragmentation for cold water fish in the north platte river drainage of the Rocky mountains: response to climate warming. Limnology and Oceanography 41: 1116-1123. https://doi.org/10.4319/lo.1996.41.5.1116
  63. Rahel, F.J. 2000. Homogenization of fish faunas across the United States. Science 288: 854-856. https://doi.org/10.1126/science.288.5467.854
  64. Rahel, F.J. 2002. Homogenization of freshwater faunas. Annual Review of Ecology and Systematics 33: 291-315. https://doi.org/10.1146/annurev.ecolsys.33.010802.150429
  65. Rahel, F.J. and J.D. Olden. 2008. Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22: 521-533. https://doi.org/10.1111/j.1523-1739.2008.00950.x
  66. Ricciardi, A. and J.B. Rasmussen. 1999. Extinction rates of north American freshwater fauna. Conservation Biology 13: 1220-1222. https://doi.org/10.1046/j.1523-1739.1999.98380.x
  67. Riley, S.P.D., G.T. Busteed, L.B. Kats, T.L. Vandergon, L.F.S. Lee, R.G. Dagit, J.L. Kerby, R.N. Fisher and R.M. Sauvajot. 2005. Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams. Conservation Biology 19: 1894-1907. https://doi.org/10.1111/j.1523-1739.2005.00295.x
  68. Roman, J. and J.A. Darling. 2007. Paradox lost: genetic diversity and the success of aquatic invasions. Trends in Ecology and Evolution 22: 454-464. https://doi.org/10.1016/j.tree.2007.07.002
  69. Schindler, D.W., K.G. Beaty, E.J. Fee, D.R. Cruikshank, E.R. DeBruyn, D.L. Findlay, G.A. Lindsey, J.A. Shearer, M.P. Stainton and M.A. Turner. 1990. Effects of climatic warming on lakes of the central boreal forest. Science 250: 967-970. https://doi.org/10.1126/science.250.4983.967
  70. Schweizer, P.E. and G.R. Matlack. 2005. Annual variation in fish assemblages of watersheds with stable and changing land use. American Midland Naturalist 153: 293-308. https://doi.org/10.1674/0003-0031(2005)153[0293:AVIFAO]2.0.CO;2
  71. Stefan, H.G., X. Fang and J.G. Eaton. 2001. Simulated fish habitat changes in north American lakes in response to projected climate warming. Transaction of American Fisheries Society 130: 459-477. https://doi.org/10.1577/1548-8659(2001)130<0459:SFHCIN>2.0.CO;2
  72. Strayer, D.L. and D. Dudgeon. 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of North American Benthological Society 29: 344-358. https://doi.org/10.1899/08-171.1
  73. Toft, J.D., S.H. Munsch, J.R. Cordell, K. Siitari, V.C. Hare, B. Holycross, L.A. DeBruyckere, C.M. Greene and B.B. Hughes. 2018. Impact of multiple stressors on juvenile fish in estuaries of the northeast Pacific. Global Change Biology (in Press)
  74. Wood, C.M. and G. McDonald. 1997. Global Warming-Implications for Freshwater and Marine Fish. Cambridge University Press, Cambridge.
  75. Xenopoulos, M.A., D.M. Lodge, J. Alcamo, M. Märker, K. Schulze and D. Van Vuuren. 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology 11: 1557-1564. https://doi.org/10.1111/j.1365-2486.2005.001008.x
  76. Yang, H.J. and B.S. Chae. 1997. The ichthyofaunal and structure of fish community around the Namgang-Dam Reservoir. Korean Journal of Environmental Biology 15: 175-183.
  77. Yoon, J.D., M.H. Jang, H.W. Kim and G.J. Joo. 2012. Fish biodiversity monitoring in rivers of South Korea, p. 175-191. In: The Biodiversity Observation Network in the Asia-Pacific Region. (Nakano, S., T. Yahara and T. Nakashizuka, eds.). Springer, Tokyo.