DOI QR코드

DOI QR Code

Contribution of Biomass Burning and Secondary Organic Carbon to Water Soluble Organic Carbon at a Suburban Site

교외지역 수용성유기탄소 내 식생연소 및 2차 유기탄소에 의한 기여량 연구

  • Oh, Sea-Ho (Department of Environmental Engineering, Mokpo National University) ;
  • Park, Eun-Ha (Department of Environmental Health, Graduate School of Public Health, Seoul National University) ;
  • Yi, Seung-Muk (Department of Environmental Health, Graduate School of Public Health, Seoul National University) ;
  • Shon, Zang-Ho (Department of Environmental Engineering, Dong-Eui University) ;
  • Park, Kihong (School of Earth Sciences and Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Bae, Min-Suk (Department of Environmental Engineering, Mokpo National University)
  • 오세호 (목포대학교 환경공학과) ;
  • 박은하 (서울대학교 보건대학원 환경보건학과) ;
  • 이승묵 (서울대학교 보건대학원 환경보건학과) ;
  • 손장호 (동의대학교 환경공학과) ;
  • 박기홍 (광주과학기술원 지구환경공학부) ;
  • 배민석 (목포대학교 환경공학과)
  • Received : 2018.01.17
  • Accepted : 2018.03.12
  • Published : 2018.04.30

Abstract

The $PM_{2.5}$ samples were collected for every 6th day during one year at a suburban site in the Namwonsi, Jeollanamdo, Republic of Korea. Samples were analyzed for elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC), and levoglucosan. Although the water-soluble fraction of fine particulate OC consistently showed over a year, levoglucosan fraction of WSOC varied considerably from month to month. In this study, non-biomass-burning WSOC ($WSOC_{NBB}$) and biomass-burning $WSOC_{BB}$ were calculated with measurements of organic source tracer, levoglucosan, to better understand the temporal distribution and sources of WSOC. Two methods of predicting the secondary organic carbon from the biomass-burning $WSOC_{BB}$ Method and the EC-tracer Method were compared. Poor correlations between SOC estimated between two methods suggested that the use of the EC tracer method to estimate SOC may be significantly flawed. Direct measurements of levoglucosan and WSOC can provide a reasonable estimate of secondary organic carbon concentrations.

Keywords

References

  1. Andrews, E., Saxena, P., Musarra, S., Hildemann, L.M., Koutrakis, P., McMurry, P.H., Olmez, I., White, W.H. (2000) Concentration and Composition of Atmospheric Aerosols from the 1995 SEAVS Experiment and a Review of the Closure Between Chemical and Gravimetric Measurements, Journal of the Air & Waste Management Association, 50(2), 648-664. https://doi.org/10.1080/10473289.2000.10464116
  2. Aswini, A.R., Hegde, P., Nair, P.R. (2018) Carbonaceous and inorganic aerosols over a sub-urban site in peninsular India: Temporal variability and source characteristics, Atmospheric Research, 199, 40-53. https://doi.org/10.1016/j.atmosres.2017.09.005
  3. Bae, M.-S., Lee, J.Y., Kim, Y.-P., Oak, M.-H., Shin, J.-S., Lee, K.-Y., Lee, H., Lee, S.Y., Kim, Y.-J. (2012) Analytical Methods of Levoglucosan, a Tracer for Cellulose in Biomass Burning, by Four Different Techniques, Asian Journal of Atmospheric Environment, 6(1), 53-66. https://doi.org/10.5572/ajae.2012.6.1.053
  4. Bae, M.-S., Park, S.-S., Kim, Y.J. (2013) Characteristics of carbonaceous aerosols measured at Gosan - Based on analysis of thermal distribution by carbon analyzer and organic compounds by GCMS, Journal of Korean Society for Atmospheric Environment, 29(6), 722-733. (in Korean with English Abstract) https://doi.org/10.5572/KOSAE.2013.29.6.722
  5. Bae, M.-S., Schauer, J.J., Lee, T., Jeong, J.-H., Kim, Y.-K., Ro, C.-U., Song, S.-K., Shon, Z.-H. (2017) Relationship between reactive oxygen species and water-soluble organic compounds: Time-resolved benzene carboxylic acids measurement in the coastal area during the KORUS-AQ campaign, Environmental Pollution, 231(1), 1-12. https://doi.org/10.1016/j.envpol.2017.07.100
  6. Calvo, A.I., Martins, V., Nunes, T., Duarte, M., Hillamo, R., Teinila, K., Pont, V., Castro, A., Fraile, R., Tarelho, L., Alves, C. (2015) Residential wood combustion in two domestic devices: Relationship of different parameters throughout the combustion cycle, Atmospheric Environment, 116, 72-82. https://doi.org/10.1016/j.atmosenv.2015.06.012
  7. Ciarelli, G., Aksoyoglu, S., Haddad, I.E., Bruns, E.A., Crippa, M., Poulain, L., Aijala, M., Carbone, S., Freney, E., O'Dowd, C., Baltensperger, U., Prevot, A.S.H. (2017) Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments, Atmospheric Chemistry and Physics, 17(12), 7653-7669. https://doi.org/10.5194/acp-17-7653-2017
  8. Fine, P.M., Cass, G.R., Simoneit, B.R.T. (2004) Chemical characterization of fne particle emissions from the wood stove combustion of prevalent United States tree species, Environmental Engineering Science, 21(6), 705-721. https://doi.org/10.1089/ees.2004.21.705
  9. Feng, J., Li, M., Zhang, P., Gong, S., Zhong, M., Wu, M., Zheng, M., Chen, C., Wang, H., Lou, S. (2013) Investigation of the sources and seasonal variations of secondary organic aerosols in $PM_{2.5}$ in Shanghai with organic tracers, Atmospheric Environment, 79(2013), 614-622. https://doi.org/10.1016/j.atmosenv.2013.07.022
  10. Goncalves, C., Alves, C., Fernandes, A.P., Monteiro, C., Tarelho, L., Evtyugina, M., Pio, C. (2011) Organic compounds in $PM_{2.5}$ emitted from fireplace and woodstove combustion of typical Portuguese wood species, Atmospheric Environment, 45(27), 4533-4545. https://doi.org/10.1016/j.atmosenv.2011.05.071
  11. Hinwood, A.L., Trout, M., Meurby, J., Barton, C., Symons, R. (2008) Assessing urinary Levoglucosan and methoxyphenols as biomarkers for use in woodsmoke exposure studies, Science of the Total Environment, 402, 139-146. https://doi.org/10.1016/j.scitotenv.2008.04.012
  12. Jeong, B., Bae, M.-S., Ahn, J., Lee, J. (2017) A Study of Carbonaceous Aerosols Measurement in Metropolitan Area Performed during KORUS-AQ 2016 Campaign, Journal of Korean Society for Atmospheric Environment, 33(3), 205-216. (in Korean with English Abstract) https://doi.org/10.5572/KOSAE.2017.33.3.205
  13. Jordan, T.B., Seen, A.J., Jacobsen, G.E. (2006) Levoglucosan as an atmospheric tracer for woodsmoke, Atmospheric Environment, 40(27), 5316-5321. https://doi.org/10.1016/j.atmosenv.2006.03.023
  14. Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E.G., Wilson, J. (2005) Organic aerosol and global climate modelling: a review, Atmospheric Chemistry and Physics, 5(4), 1053-1123. https://doi.org/10.5194/acp-5-1053-2005
  15. Khuzestani, R.B., Schauer, J.J., Wei, Y., Zhang, L., Cai, T., Zhang, Y., Zhang, Y. (2017) Quantification of the Sources of Long-Range Transport of $PM_{2.5}$ Pollution in the Ordos Region, Inner Mongolia, China, Environmental Pollution, 229, 1019-1031. https://doi.org/10.1016/j.envpol.2017.07.093
  16. Lim, H.-J., Turpin, B.J. (2002) Origins of Primary and Secondary Organic Aerosol in Atlanta: Results of Time-Resolved Measurements during the Atlanta Supersite Experiment, Environmental Science & Technology, 36(21), 4489-4496. https://doi.org/10.1021/es0206487
  17. Mader, B.T., Schauer, J.J., Seinfeld, J.H., Flagan, R.C., Yu, J.Z., Yang, H., Lim, H.J., Turpin, B.J., Deminter, J.T., Heidemann, G., Bae, M.S., Quinn, P., Bates, T., Eatough, D.J., Huebert, B.J., Bertram, T., Howell, S. (2003) Sampling methods used for the collection of particle-phase organic and elemental carbon during ACE-Asia, Atmospheric Environment, 37(11), 1435-1449. https://doi.org/10.1016/S1352-2310(02)01061-0
  18. Park, D.-J., Han, Y.-J., Lee, J.-Y., Lee, K.-Y., Cho, I.-H., Park, E.H., Yi, S.-M., Bae, M.-S. (2015) Source Profle of Road Dust for Statistical Apportionment Modeling in Seoul, Journal of Korean Society for Atmospheric Environment, 31(2), 105-117. (in Korean with English Abstract) https://doi.org/10.5572/KOSAE.2015.31.2.105
  19. Park, S.S., Bae, M.-S., Schauer, J.J., Kim, Y.J., Cho, S.Y., Kim, S.J. (2006) Molecular composition of $PM_{2.5}$ organic aerosol measured at an urban site of Korea during the ACE-Asia campaign, Atmospheric Environment, 40(22), 4182-4198. https://doi.org/10.1016/j.atmosenv.2006.02.012
  20. Pashynska, V., Vermeylen, R., Vas, G., Maenhaut, W., Claeys, M. (2002) Development of a gas chromatographic/ion trap mass spectrometric method for the determination of Levoglucosan and saccharidic compounds in atmospheric aerosols. Application to urban aerosols, Journal of Mass Spectrometry, 37(12), 1249-1257. https://doi.org/10.1002/jms.391
  21. Puxbaum, H., Caseiro, A., Sanchez-Ochoa, A., Kasper-Giebl, A., Claeys, M., Gelencser, A., Legrand, M., Preunkert, S., Pio, C. (2007) Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background, Journal of Geophysical Research: Atmospheres, 112(D23).
  22. Radzi bin Abas, M., Oros, D.R., Simoneit, B.R.T. (2004) Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes, Chemosphere, 55(8), 1089-1095. https://doi.org/10.1016/j.chemosphere.2004.02.002
  23. Salma, I., Nemeth, Z., Weidinger, T., Maenhaut, W., Claeys, M., Molnar, M., Major, I., Ajtai, T., Utry, N., Bozoki, Z. (2017) Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon-levoglucosan marker method, Atmospheric Chemistry and Physics, 17(22), 13767-13781. https://doi.org/10.5194/acp-17-13767-2017
  24. Sannigrahi, P., Sullivan, A.P., Weber, R.J., Ingall, E.D. (2006) Characterization of Water-Soluble Organic Carbon in Urban Atmospheric Aerosols Using Solid-State $^{13}C$ NMR Spectroscopy, Environmental Science & Technology, 40(3), 666-672. https://doi.org/10.1021/es051150i
  25. Saxena, P., Hildemann, L.M., Mcmurry, P.H., Seinfeld, J.H. (1995) Organics alter hygroscopic behavior of atmospheric particles, Journal of Geophysical Research: Atmospheres, 100(D9), 18755-18770. https://doi.org/10.1029/95JD01835
  26. Schauer, J.J., Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T. (1996) Source apportionment of airborne particulate matter using organic compounds as tracers, Atmospheric Environment, 30(22), 3837-3855. https://doi.org/10.1016/1352-2310(96)00085-4
  27. Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F., Cass, G.R. (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmospheric Environment, 33(2), 173-182. https://doi.org/10.1016/S1352-2310(98)00145-9
  28. Strader, R., Lurmann, F., Pandis, S.N. (1999) Evaluation of secondary organic aerosol formation in winter, Atmospheric Environment, 33(29), 4849-4863. https://doi.org/10.1016/S1352-2310(99)00310-6
  29. Turpin, B.J., Huntzicker, J.J. (1995) Identifcation of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS, Atmospheric Environment, 29(23), 3527-3544. https://doi.org/10.1016/1352-2310(94)00276-Q
  30. Wang, D., Pakbin, P., Shafer, M.M., Antkiewicz, D., Schauer, J.J., Sioutas, C. (2013) Macrophage reactive oxygen species activity of water-soluble and water-insoluble fractions of ambient coarse, $PM_{2.5}$ and ultrafne particulate matter (PM) in Los Angeles, Atmospheric Environment, 77, 301-310. https://doi.org/10.1016/j.atmosenv.2013.05.031
  31. Yu, G.-H., Cho, S.-Y., Bae, M.-S., Lee, K.-H., Park, S.-S. (2015) Investigation of $PM_{2.5}$ Pollution Episodes in Gwangju, Journal of Korean Society for Atmospheric Environment, 31(3), 269-286. (in Korean with English Abstract) https://doi.org/10.5572/KOSAE.2015.31.3.269
  32. Zheng, M., Cass, G.R., Schauer, J.J., Edgerton, E.S. (2002) Source Apportionment of $PM_{2.5}$ in the Southeastern United States Using Solvent-Extractable Organic Compounds as Tracers, Environmental Science & Technology, 36(11), 2361-2371. https://doi.org/10.1021/es011275x