DOI QR코드

DOI QR Code

Variation in depositional environments controlled by tectonics and volcanic activities in the lower part of the Seongdongri Formation, Janggi Basin

구조운동과 화산활동에 의해 조절된 장기분지 성동리층 하부의 퇴적 환경 변화

  • Gu, Hui-Chan (Department of Petroleum Resources Technology, University of Science and Technology) ;
  • Gim, Jeong-Hwan (Dept. of Geology, Gyeongsang National University) ;
  • Hwang, In Gul (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 구희찬 (과학기술연합대학원대학교 석유자원공학과) ;
  • 김정환 (경상대학교 지질과학과) ;
  • 황인걸 (한국지질자원연구원 석유해저연구본부)
  • Received : 2017.06.20
  • Accepted : 2018.01.11
  • Published : 2018.02.28

Abstract

The Seongdongri Formation in the Janggi Basin is composed of dacitic volcaniclastic and clastic sediments, deposited in fluvial and lacustrine environments. In the cores, individual beds of volcaniclastic sediments and the patterns of depositional systems were used for correlation. Prograding and retrograding patterns of depositional systems were also used for correlation. Based on these features, the lower part of the Seongdongri Formation can be divided into six depositional units. The Unit S-1 is composed of dacitic tuff, conglomerate beds showing a fining-upward trend, and massive and laminated mudstones with thin, graded sandstones, in ascending order. The vertical succession suggests a volcanic eruption and high rates of volcaniclastic sediment supply, resulting in the deposition of fluvial sediments. The basin was, then, subsided rapidly, depositing thick mudstones in lacustrine environments. In the western part of the basin (JG-1, -4 wells), the Unit S-2 is composed of thick (~80 m) conglomerates and gravelly sandstones, interpreted as gravelly braided stream deposits. In the eastern part (JG-3, -5, -6 wells), however, relatively thin (< 30 m) mudstones were deposited in lake or lake margin environments. Rapid subsidence along the western boundary fault resulted in the westward tilting of the basin. However, deposition of braided stream and swamp sediments suggests high rate of sediment supply. In Unit S-3, JG-1, -4, -6 wells are represented by 50 m thick resedimented volcaniclastic rocks showing fining-upward trends, deposited in braided stream environments. The JG-3, -5 wells, however, comprise thick (< 75 m) mudstone, muddy sandstone and fine sandstone with a coarsening-upward trend, representing a prograding depositional system to the lake environment. The abrupt changes can be interpreted as activation of a normal fault between JG-3 and -6 wells. The Unit S-4 is composed of thick dacitic tuffs and clastic sediments. Massive feature, abundant ash matrix, and carbonized wood fragments in the dacitic tuffs are indicative of deposition by pyroclastic density currents. The Unit S-5 is composed of 70 m thick dacitic volcaniclastic rocks. Fractured crystals in lapilli tuffs, ash-depleted matrix in the lower part of the tuff, carbonized wood fragments and accretionary lapilli suggest deposition by pyroclastic density currents entering into subaqueous environments that were generated from subaerial eruption. The Unit S-6 is dominated by thick laminated mudstones, suggesting sediment depleted lacustrine environments after the volcanic eruptions. Variations in sedimentary facies and thickness in each depositional unit suggest that sedimentary architecture and depositional environments were controlled by tectonic subsidence and related volcanic activities, resulting in rapid variation of sediment supply rate.

장기분지의 성동리층은 데사이트질 화산쇄설물과 하천 및 호수환경에서 퇴적된 쇄설성 퇴적물이 교호한다. 분지 전반에 걸쳐 산출되는 화산쇄설물과 퇴적계의 전진 및 후퇴 양상을 통해, 5개의 시추코어와 육상 노두의 성동리층 하부를 대비하여 6개의 퇴적단위로 구분하였다. 퇴적단위 S-1은 응회암, 상향세립화 경향을 보이는 역암 그리고 괴상 및 엽층리를 보이는 이암 등으로 구성된다. 이는 화산활동으로 다량의 퇴적물이 공급되어 하성환경이 조성된 후 분지침강이 일어나 호성 환경이 형성되었음을 지시한다. 퇴적단위 S-2는 서쪽의 장기 1, 4호공에서 역질 퇴적물이 약 80 m로 두껍게 분포하나, 동쪽의 장기 3, 5, 6호공에서는 상대적으로 세립질이고 약 30 m에 불과하다. 이는 분지 서쪽에서 정단층 운동으로 퇴적수용공간이 많이 형성되었지만 다량의 퇴적물이 공급되어 망상하천 및 습지환경이 유지된 것으로 해석된다. 퇴적단위 S-3은 장기 1, 4, 6호공에서 약 50 m 두께로 하성환경에서 재동된 응회질 퇴적암이 발달해 있고, 장기 3, 5호공에서는 약 75 m 두께로 상향조립화 경향을 보이는 호수로 전진구축하는 퇴적계가 분포한다. 이러한 변화는 장기 3호공과 6호공 사이의 정단층 운동을 지시한다. 퇴적단위 S-4는 데사이트질 화산력 응회암 및 쇄설성 퇴적암으로 구성되어있다. 응회암이 주로 괴상이며 탄화목이 분포하는 것으로 보아 육상에서 분출한 화쇄류에 의한 것으로 보인다. 퇴적단위 S-5는 약 70 m의 화산쇄설물로 구성되어있으며, 하부에 유리질 화산회가 결여되어있고 내부균열을 보이는 결정, 탄화목 및 부가화산력 등으로 보아 육상에서 분출된 화쇄류가 수중환경에서 퇴적된 것으로 해석된다. 퇴적단위 S-6의 두꺼운 엽리상 이암은 화산활동 이후 분지 전반이 침강하여 시추공 인근까지 조립질 퇴적물이 공급되지 않는 대규모 호수가 형성되었음을 지시한다. 성동리층 하부의 6개 퇴적단위 내부에서 나타나는 퇴적상 변화와 두께 차이는 지구조 운동과 이와 관련된 화산활동 및 퇴적물 공급량 변화에 의해 조절된 것으로 해석된다.

Keywords

Acknowledgement

Supported by : (재)한국이산화탄소포집, 처리연구개발센터

References

  1. Allen, S.R. and Cas, R.A.F., 1998, Rhyolitic fallout and pyroclastic density current deposits from a phreatoplinian eruption in the eastern Aegean Sea, Greece. Journal of Volcanology and Geothermal Research, 86(1), 219-251. https://doi.org/10.1016/S0377-0273(98)00080-8
  2. Allen, S.R., Freundt, A. and Kurokawa, K., 2012, Characteristics of submarine pumice-rich density current deposits sourced from turbulent mixing of subaerial pyroclastic flows at the shoreline: Field and experimental assessment. Bulletin of Volcanology, 74, 657-675. https://doi.org/10.1007/s00445-011-0553-1
  3. Anderson, R.Y. and Dean, W.E., 1988, Lacustrine varve formation through time. Palaeogeography, Palaeoclimatology, Palaeoecology, 62(1), 215-235. https://doi.org/10.1016/0031-0182(88)90055-7
  4. Bahk, J.J. and Chough, S.K., 1996, An interplay of synand intereruption depositional processes: the lower part of the Jangki Group (Miocene), SE Korea. Sedimentology, 43, 421-438. https://doi.org/10.1046/j.1365-3091.1996.d01-19.x
  5. Best, J.L., 1992, Sedimentology and vent timing of a catastrophic volcaniclastic mass flow, Volcan Hudson, Southern Chile. Bulletin of Volcanology, 54, 299-318. https://doi.org/10.1007/BF00301484
  6. Branney, M.J. and Kokelaar, B.P., 1997, Giant bed from a sustained catastrophic density current flowing over topography: Acatlan ignimbrite, Mexico. Geology, 25, 115-118. https://doi.org/10.1130/0091-7613(1997)025<0115:GBFASC>2.3.CO;2
  7. Branney, M.J. and Kokelaar, B.P., 2002, Pyroclastic Density Currents and the Sedimentation of Ignimbrites. The Geological Society, London, Memoir, 27, 143 p.
  8. Brown, R.J. and Branney, M.J., 2004, Event-stratigraphy of a caldera-forming ignimbrite eruption on Tenerife: the 273 ka Poris Formation. Bulletin of Volcanology, 66(5), 392-416. https://doi.org/10.1007/s00445-003-0321-y
  9. Brown, R.J., Branney, M.J., Maher, C. and Davila-Harris, P., 2010, Origin of accretionary lapilli within ground-hugging density currents: Evidence from pyroclastic couplets on Tenerife. Geological Society of America Bulletin, 122, 305-320. https://doi.org/10.1130/B26449.1
  10. Busby, C. and Bassett, K., 2007, Volcanic facies architecture of an intra-arc strike-slip basin, Santa Rita Mountains, Southern Arizona. Bulletin of Volcanology, 70(1), 85-103. https://doi.org/10.1007/s00445-007-0122-9
  11. Cas, R.A.F. and Wright, J.V., 1991, Subaqueous pyroclastic flows and ignimbrites: an assessment. Bulletin of Volcanology, 53, 357-380. https://doi.org/10.1007/BF00280227
  12. Choi, H.I., 1986, Fluvial plain/lacustrine facies transition in the Cretaceous Sindong Group, south coast of Korea. Sedimentary Geology, 48(3), 295-320. https://doi.org/10.1016/0037-0738(86)90034-5
  13. Chung, C.H. and Choi, D.K., 1993, Paleoclimatic Implications of Palynoflora from the Yeonil Group (Miocene), Pohang Area, Korea. Journal of the Paleontological Society of Korea, 9, 143-154.
  14. Cole, R.B. and Ridgway, K.D., 1993, The influence of volcanism on fluvial depositional systems in a Cenozoic strike-slip basin, Denali fault systems, Yukon Territory, Canada. Journal of Sedimentary Petrology, 63, 152-166.
  15. Currie, B.S., 1997, Sequence stratigraphy of nonmarine Jurassic-Cretaceous rocks, central Cordilleran forelandbasin system. Geological Society of America Bulletin, 109(9), 1206-1222. https://doi.org/10.1130/0016-7606(1997)109<1206:SSONJC>2.3.CO;2
  16. Ethridge, F.G., Wood, L.J. and Schumm, S.A., 1998, Cyclic variables controlling fluvial sequence development: problems and perspectives. SEPM (Society for Sedimentary Geology), Special Publication, 59, 18-29.
  17. Farrell, K.M., 2001, Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan. Sedimentary Geology, 139(2), 93-150. https://doi.org/10.1016/S0037-0738(00)00150-0
  18. Fisher, R.V., 1979, Models for pyroclastic surges and pyroclastic flows. Journal of Volcanology and Geothermal Research, 6, 305-318. https://doi.org/10.1016/0377-0273(79)90008-8
  19. Fisher, R.V., 1984, Submarine volcaniclastic rocks. The Geological Society, London, Special Publications, 16, 5-27. https://doi.org/10.1144/GSL.SP.1984.016.01.02
  20. Freundt, A., 2003, Entranve of hot pyroclastic flows into the sea: experimental observations. Bulletin of Volcanology, 65, 144-164.
  21. Gim, J.-H., Jeong, J.-O., Gihm, Y.S., Gu, H.-C. and Sohn, Y.K., 2016, Depositional environments and processes of the subsurface dacitic volcaniclastic deposits in the Miocene Janggi Basin, SE Korea. Journal of the Geological Society of Korea, 52, 775-798 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2016.52.6.775
  22. Gruszka, B., 2007, The Pleistocene glaciolacustrine sediments in the Belchatow mine (central Poland): Endogenic and exogenic controls. Sedimentary Geology, 193, 149-166. https://doi.org/10.1016/j.sedgeo.2006.01.008
  23. Gu, H.-C. and Hwang, I.G., 2017, Depositional history of the Janggi Conglomerate controlled by tectonic subsidence, during the early stage of Janggi Basin evolution. Journal of the Geological Society of Korea, 53, 221-240 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2017.53.2.221
  24. Hadlari, T., Rainbird, R.H. and Donaldson, J.A., 2006, Alluvial, eolian and lacustrine sedimentology of a Paleoproterozoic half-graben, Baker Lake Basin, Nunavut, Canada. Sedimentary Geology, 190(1), 47-70. https://doi.org/10.1016/j.sedgeo.2006.05.005
  25. Holland, S.M., 2016, The non-uniformity of fossil preservation. Phil. Trans. R. Soc. B., 371(1699), 20150130. https://doi.org/10.1098/rstb.2015.0130
  26. Hooper, P.R., 1990, The timing of crustal extension and the eruption of continental flood basalts. Nature, 345(6272), 246. https://doi.org/10.1038/345246a0
  27. Howarth, G.H. and Skinner, E.M.W., 2012, The geology and emplacement of the volcaniclastic infill at the Voorspoed Group II kimberlite (orangeite) pipe, Kroonstad Cluster, South Africa. Journal of Volcanology and Geothermal Research, 231, 24-38.
  28. Jackson, J.A., King, G. and Vita-Finzi, C., 1982, The neotectonics of the Aegean: an alternative view. Earth planet. Sci. Lett, 61, 303-18. https://doi.org/10.1016/0012-821X(82)90062-0
  29. Jackson, J.A., McKenzie, D.P., 1983, The geometric evolution of normal fault systems. J. Struct. Geol., 5, 471-82. https://doi.org/10.1016/0191-8141(83)90053-6
  30. Jeong, J.O., Kwon, C.W. and Sohn, Y.K., 2008, Lithofacies and architecture of a basinwide tuff unit in the Miocene Eoil Basin, SE Korea: Modes of pyroclastic sedimentation, changes in eruption style, and implications for basin configuration. Geological Society of America Bulletin, 120(9-10), 1263-1279. https://doi.org/10.1130/B26077.1
  31. Jung, S., Kim, M.C., Cho, H., Son, M. and Sohn, Y.K., 2012, Basin fills and geological structures of the Miocene Yangpo subbasin in the janggi-myeon, Pohang, SE Korea. Journal of the Geological Society of Korea, 48, 49-68 (in Korean with English abstract).
  32. Jo, H.R., Rhee, C.W. and Chough, S.K., 1997, Distinctive characteristics of a streamflow-dominated alluvial fan deposit: Sanghori area, Kyongsang Basin (Early Cretaceous), southeastern Korea. Sedimentary Geology, 110(1), 51-79. https://doi.org/10.1016/S0037-0738(96)00083-8
  33. Kataoka, K. and Nakajo, T., 2002, Volcaniclastic resedimentation in distal fluvial basins induced by large-volume explosive volcanism: the Ebisutoge-Fukuda tephra, Plio-Pleistocene boundary, central Japan. Sedimentology, 49, 319-334. https://doi.org/10.1046/j.1365-3091.2002.00445.x
  34. Kenyon, P.M. and Turcotte, D.L., 1985, Morphology of a delta prograding by bulk sediment transport. Geological Society of America Bulletin, 96, 1457-1465. https://doi.org/10.1130/0016-7606(1985)96<1457:MOADPB>2.0.CO;2
  35. Ki, J.S., 2009, Volcanism and sedimentation in the southeastern part of the Miocene Janggi Basin, SE Korea. Master's thesis, Gyeongsang National University, 71 p.
  36. Kim, J.S., Son, M. and Kim, J.-S., 2005, $^{40}Ar/^{39}Ar$ ages of the Tertiary dike swarm and volcanic rocks, SE Korea. Journal of the Petrological Society of Korea, 14, 93-107 (in Korean with English abstract).
  37. Kim, K., Jeong, E.-K., Sun, B.-Y. and Lee, J., 2008, New Record of Fossil Woods from the Janggi Group in Pohang, Korea. Journal of the Paleontological Society of Korea, 24, 135-147 (in Korean with English abstract).
  38. Kim, M.-C., Kim, J.-S., Jung, S., Son, M. and Sohn, Y.K., 2011, Bimodal Volcanism and Classification of the Miocene Basin Fill in the Northern Area of the Janggi-myeon, Pohang, Southeast Korea. Journal of the Geological Society of Korea, 47, 585-612 (in Korean with English abstract).
  39. Kim, M.-C., Gihm, Y.S., Son, E.-Y., Son, M., Hwang, I.G., Shinn, Y.J. and Choi, H., 2015, Assessment of the potential for geological storage of $CO_2$ based on structural and sedimentologic characteristics in the Miocene Janggi Basin, SE Korea. Journal of the Geological Society of Korea, 51, 253-271 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.3.253
  40. Kwon, C.W., Jeong, J.O. and Sohn, Y.K., 2011, Sedimentary records of rift to pull-apart tectonics in the Miocene Eoil Basin, SE Korea. Sedimentary Geology, 236(3), 256-271. https://doi.org/10.1016/j.sedgeo.2011.01.011
  41. Lee, H.K., Moon, H-S., Min, K.D., Kim, I-S., Yun, H. and Itaya, T., 1992, Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks. Jour. Korean Inst. Mining Geol., 25, 337-349 (in Korean with English abstract).
  42. Lee, S.-Y. and Hwang, I.G., 2012, Vertical variation of sedimentary facies and depositional environment in the core section of the lower part of the Sindong Group, northwestern part of the Gyeongsang Basin. Journal of the Geological Society of Korea, 48, 365-381 (in Korean with English abstract).
  43. Leeder, M.R., Gawthorpe, R.L., 1987, Sedimentary models for extensional tilt-block/half-graben basins. Geological Society, London, Special Publications, 28(1), 139-152. https://doi.org/10.1144/GSL.SP.1987.028.01.11
  44. Leleu, S., Hartley, A.J. and Williams, B.P.J., 2009, Large-scale alluvial architecture and correlation in a Triassic pebbly braided river system, lower Wolfville Formation (Fundy Basin, Nova Scotia, Canada). Journal of Sedimentary Research, 79, 265-286. https://doi.org/10.2110/jsr.2009.034
  45. McKenzie, D.P., 1978, Some remarks on the development of sedimentary basins. Earth planet. Sci. Lett., 40, 25-32. https://doi.org/10.1016/0012-821X(78)90071-7
  46. Miall, A.D., 1977, A review of the braided-river depositional environment. Earth-Science Review, 13, 1-62. https://doi.org/10.1016/0012-8252(77)90055-1
  47. Miall, A.D., 1985, Architectural-Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits. Earth-Science Review, 22, 261-308. https://doi.org/10.1016/0012-8252(85)90001-7
  48. Miall, A.D., 1996, The Geology of Fluvial Deposits. Springer-Verlag, New York, 582 p.
  49. Nichols, G., 2009, Sedimentology and stratigraphy. John Wiley & Sons, 419 p.
  50. Paik, I.S., Lee, H.I., Kang, H.C., Kim, K., Jeong, E.-K., Kim, J. and Kim, H.J., 2011, Fossil woods from the early Miocene Singjeongri Formation, Ocheon, Pohang City: Occurrence, preservation, and taphonomy. Journal of the Geological Society of Korea, 47, 613-633 (in Korean with English abstract).
  51. Potter, P.E., Maynard, J.B. and Depetris, P.J., 2005, Mud and mudstones: Introduction and overview. Springer Science & Business Media.
  52. Scott, F.L., John, H.E., Martin, J.S. and Andrew, B.G.B., 2001, A varve record of increased 'Little Ice Age' raindall associated with volcanic activity, Arctic Archipelago, Cnada, The Holocene, 11, 2, 243-249. https://doi.org/10.1191/095968301668776315
  53. Shanley, K.W. and McCabe, P.J., 1994, Perspectives on the sequence stratigraphy of continental strata. AAPG bulletin, 78(4), 544-568.
  54. Sloan, R.J. and Williams, B.P.J., 2009, Volcano-tectonic control of offshore to tidal-flat regressive cycles from the Dunquin Group (Silurian) of southwest Ireland. Sedimentation, Tectonics, and Eustasy (Special Publication 12 of the IAS), 105.
  55. Son, M., Song, W.S., Kim, M.-C., Cheon, Y., Jung, S., Cho, H., Kim, H.-G., Kim, J.S. and Sohn, Y.K., 2013, Miocene Crustal Deformation, Basin Development, and Tectonic Implication in the southeastern Korean Peninsula. Journal of the Geological Society of Korea, 49, 93-118 (in Korean with English abstract).
  56. Sohn, Y.K., Ki, J.S., Jung, S., Kim, M.-C., Cho, H. and Son, M., 2013, Synvolcanic and syntectonic sedimentation of the mixed volcaniclastic-epiclastic succession in the Miocene Janggi Basin, SE Korea. Sedimentary Geology, 288, 40-59. https://doi.org/10.1016/j.sedgeo.2013.01.002
  57. Talling, P.J., Masson, D.G., Sumner, E.J. and Malgesini, G., 2012, Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59(7), 1937-2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x
  58. Todd, S.P., 1989, Stream-driven, high-density gravelly traction carpets: possible deposits in the Trabeg Conglomerate Formation, SW Ireland and some theoretical considerations of their origin. Sedimentology, 36(4), 513-530. https://doi.org/10.1111/j.1365-3091.1989.tb02083.x
  59. Turkmen, I., Aksoy, E. and Tasgin, C.K., 2007, Alluvial and lacustrine facies in an extensional basin: The Miocene of Malatya basin, eastern Turkey. Journal of Asian Earth Sciences, 30, 181-198. https://doi.org/10.1016/j.jseaes.2006.08.006
  60. Walker, G.P.L., 1985, Origin of coarse lithic breccias near ignimbrite source vents. Journal of Volcanology and Geothermal Research, 25, 157-171. https://doi.org/10.1016/0377-0273(85)90010-1
  61. White, R. and McKenzie, D., 1989, Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research: Solid Earth, 94(B6), 7685-7729. https://doi.org/10.1029/JB094iB06p07685
  62. White, R.S., Spence, G.D., Fowler, S.R., McKenzie, D.P. and Westbrook, G.K., 1987, Magmatism at rifted continental margins. Nature, 330, 439-444. https://doi.org/10.1038/330439a0
  63. Zanchetta, G., Sulpizio, R., Pareschi, M.T., Leoni, F.M. and Santacroce, R., 2004, Characteristics of May 5-6, 1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): relationships to structural damage and hazard zonation. Journal of volcanology and geothermal research, 133(1), 377-393. https://doi.org/10.1016/S0377-0273(03)00409-8

Cited by

  1. Estimates of scCO2 Storage and Sealing Capacity of the Janggi Basin in Korea Based on Laboratory Scale Experiments vol.9, pp.9, 2018, https://doi.org/10.3390/min9090515
  2. Depositional history of the upper part of the Seongdongri Formation, Janggi Basin, controlled by tectonics and volcanic activity vol.56, pp.3, 2018, https://doi.org/10.14770/jgsk.2020.56.3.285
  3. 한반도 남동부 포항-울산지역 심부 지질구조 분석을 위한 중력장 해석 vol.53, pp.5, 2018, https://doi.org/10.9719/eeg.2020.53.5.597
  4. Site selection and characterization for onshore 10,000-ton-class CO2 pilot storage in Early Miocene Janggi Basin, SE Korea: Storage potential and structural stability of siliciclastic-volca vol.103, pp.None, 2018, https://doi.org/10.1016/j.ijggc.2020.103174
  5. Event stratigraphy of Yeonil Group, Pohang Basin : Based on correlation of 21 deep cores and outcrop sections vol.57, pp.5, 2018, https://doi.org/10.14770/jgsk.2021.57.5.649