DOI QR코드

DOI QR Code

Reduction of Carbon Dioxide and Nitrous Oxide Emissions through Various Biochars Application in the Upland

밭 토양에서 다양한 바이오차 시용에 따른 이산화탄소 및 아산화질소 감축효과

  • Lee, Sun-Il (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Kim, Gun-Yeob (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Choi, Eun-Jung (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Lee, Jong-Sik (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Jung, Hyun-Cheol (Climate Change & Agroecology Division, National Institute of Agricultural Sciences)
  • 이선일 (국립농업과학원 기후변화생태과) ;
  • 김건엽 (국립농업과학원 기후변화생태과) ;
  • 최은정 (국립농업과학원 기후변화생태과) ;
  • 이종식 (국립농업과학원 기후변화생태과) ;
  • 정현철 (국립농업과학원 기후변화생태과)
  • Received : 2018.04.11
  • Accepted : 2018.05.14
  • Published : 2018.06.30

Abstract

Biochar is a carbon-rich solid product obtained by the pyrolysis of biomass. It has been suggested to mitigate climate change through increased carbon storage and reduction of greenhouse gas emission. The objective of this study was to evaluate carbon dioxide ($CO_2$) and nitrous oxide ($N_2O$) emissions from soil after various biochars addition. The biochars were produced by pyrolysing pear branch, rice hull and bean straw at $400{\sim}500^{\circ}C$. The treatments were consisted of a control without input of biochar and three type biochars input as 5.0 Mg/ha. Emissions of $CO_2$ and $N_2O$ from upland soil were determined using closed chamber for 8 weeks at $25^{\circ}C$ of incubation temperature. It was shown that the cumulative $CO_2$ were 207.1 to $255.2g\;CO_2/m^2$ for biochar input treatments and $258.6g\;CO_2/m^2$ for the control after experimental periods. The cumulative $CO_2$ emission was slightly decreased in biochar input treatment compared to the control. It was appeared that cumulative $N_2O$ emissions were $2,890.6mg\;N_2O/m^2$ for control, 379.7 to $525.2mg\;N_2O/m^2$ for biochar input treatment at the end of experiment. All biochar treatments were found to significantly reduce $N_2O$ emission by 82~87%. Consequently the biochar from byproducts such as pear branch, rice hull and bean straw could suppress the soil $N_2O$ emission. The results from the study imply that biochar can be utilized to reduce greenhouse gas emission from the upland field.

다양한 농업 부산물을 열분해하여 바이오차를 생산하고 이를 밭 농경지에 투입함에 따라 토양 화학적 변화와 온실가스 발생량에 대해 비교하여 평가하였다. 실내 인큐베이터 실험으로 항온조건은 미생물 활성이 가장 활발한 조건인 수분보수력 70%, 온도는 $25^{\circ}C$ 조건에서 8주간 실험을 수행하였다. 그 기간 동안 주기적으로 가스시료를 채취하여 온실가스를 각각 분석하였다. 누적 이산화탄소 발생량은 바이오차를 투입하지 않은 대조구에서 $258.6g\;CO_2/m^2$ 그리고 바이오차를 투입한 처리구에서는 207.1에서 $255.2g\;CO_2/m^2$의 범위로 발생하였다. 즉 바이오차가 투입됨에 따라 이산화탄소 발생량이 증가하지 않고 비슷하거나 조금 감소하는 경향을 나타냈다. 아산화질소의 누적 발생량은 대조구에서 $2,890.6mg\;N_2O/m^2$ 그리고 바이오차를 투입한 처리구에서는 379.7에서 $525.2mg\;N_2O/m^2$ 의 범위로 발생하였다. 바이오차가 투입됨에 따라 아산화질소 발생량은 80% 이상 감축할 수 있었다. 따라서 바이오차를 밭 농경지에 적용한다면 아산화질소 발생량을 감축할 수 있는 소재로 활용할 수 가 있을 것이다.

Keywords

References

  1. Park, W. K., Park, N. B., Shin, J. D., Hong, S. G. & Kwon S. I., "Estimation of biomass resource conversion factor and potential production in agricultural sector", Korean Journal of Environmental Agriculture, 30(3), pp. 252-260. (2011). https://doi.org/10.5338/KJEA.2011.30.3.252
  2. Zhang, X., Kondragunta, S., Schmidt, C. & Kogan, F., "Near real time monitoring of biomass burning particulate emissions (PM2. 5) across contiguous United States using multiple satellite instruments", Atmospheric Environment, 42(29), pp. 6959-6972. (2008). https://doi.org/10.1016/j.atmosenv.2008.04.060
  3. Lehmann, J.. and Joseph, S., "Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology", Earthscan, London, pp. 1-12, (2009).
  4. Mathews, J. A., "Carbon-negative biofuels", Energy Policy, 36(3), pp. 940-945. (2008). https://doi.org/10.1016/j.enpol.2007.11.029
  5. Lehmann, J., "Biological carbon sequestration must and can be a win-win approach", Climate Change. 97(3), pp. 459-463. (2009). https://doi.org/10.1007/s10584-009-9695-y
  6. Singh, B. P., Cowie A. L. and Smernik, R. J., "Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature", Environmental Science and Technology, 46(21), pp. 11770-11778. (2012). https://doi.org/10.1021/es302545b
  7. Larid, D., Fleming, P., Wang, B. Q., Horton, R. and Karlen. D., "Biochar impact on nutrient leaching from a Midwestern agricultural soil", Geoderma, 158(3), pp. 436-442. (2010). https://doi.org/10.1016/j.geoderma.2010.05.012
  8. Yanai, Y., Toyota, K. and Okazaki, M., "Effects of charcoal addition on $N_2O$ emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments", Soil Science and Plant Nutrition, 53(2), pp. 181-188. (2007). https://doi.org/10.1111/j.1747-0765.2007.00123.x
  9. Cheng, Y., Cai, Z. C., Chang, S. X., Wang, J. and Zhang, J. B., "Wheat straw and its biochar have contrasting effects on inorganic N retention and $N_2O$ production in a cultivated black chernozem", Biology and Fertility of Soils, 48(8), pp. 941-946. (2012). https://doi.org/10.1007/s00374-012-0687-0
  10. Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. and Kathuria, A., "Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils", Journal of Environmental Quality. 39(4), pp. 1224-1235. (2009). https://doi.org/10.2134/jeq2009.0138
  11. Lee, S. I., Lee J. S., Kim G. Y., Choi, E. J., Suh S. U. and Na U. S., "Effect of carbonized biomass derived from pruning on soil carbon pools in pear orchard", Korean Journal of Environmental Agriculture, 35(3), pp. 159-165. (2016). https://doi.org/10.5338/KJEA.2016.35.3.26
  12. Lee, S. I., Kim G. Y., Choi, E. J., Lee J. S. & Jung H. C., "Decreases nitrous oxide emission and increase soil carbon via carbonized biomass application of orchard soil", Korean Journal of Environmental Agriculture, 36(2), pp. 73-79. (2017). https://doi.org/10.5338/KJEA.2017.36.2.13
  13. Gee, G. W. and Bauder, J. W., "Particle size analysis. Physical and mineralogical methods", American Society of Agronomy and Soil Science Society of America, pp. 383-412. (1986).
  14. NIAS., "Methods of soil and plant analysis:, National Institute of Agricultural Sciences, RDA, (2000).
  15. Zeng, W., Xu, C., Wu, J., Huang, J. and Ma, T., "Effect of salinity on soil respiration and nitrogen dynamics", Ecological Chemistry and Engineering S., 20(3), pp. 519-530. (2013). https://doi.org/10.2478/eces-2013-0039
  16. Nichols G. J., Cripps, J. A., Collinson, M. E. and Scott. A. D., "Experiments in waterlogging and sedimentology of charcoal: Results and implications", Paleogeography, Paleoclimatology, Paleoecology, 164(1), pp. 43-56. (2000). https://doi.org/10.1016/S0031-0182(00)00174-7
  17. Ascough, P. L., Sturrock, C. J. and Bird, M. I., "Investigation of growth responses in saprophytic fungi to charred biomass", Isotopes in Environmental and Health Studies, 46(1), pp. 64-77. (2010). https://doi.org/10.1080/10256010903388436
  18. International Biochar Initiative (IBI), "Standard test method for estimating biochar carbon stability", (2013).
  19. Khalil, M. I., Hossain, M. B. and Schmidhalter, U., "Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials", Soil Biology and Biochemistry, 37(8), pp. 1507-1518. (2005). https://doi.org/10.1016/j.soilbio.2005.01.014
  20. Dalal, R. C., Wang, W., Robertson, G. P. and Parton, W. J., "Nitrous oxide emission from Australian agricultural lands and mitigation options: a review", Soil Res. 41, pp. 165-195. (2003). https://doi.org/10.1071/SR02064
  21. Cayuela, M. L., Van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A. and Sanchez-Monedero, M. A., "Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture", Ecosystems & Environment, 191, pp. 5-16. (2014). https://doi.org/10.1016/j.agee.2013.10.009
  22. Wang, N., Chang, Z., Xue, X., Yu, J., Shi, X., Ma, L. and Li, H., "Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil", Science of The Total Environment, 581, pp. 689-696, (2017).

Cited by

  1. 밭토양에서 저회의 풍화가 온실가스 배출 저감에 미치는 영향 vol.38, pp.4, 2019, https://doi.org/10.5338/kjea.2019.38.4.33
  2. 옥수수 재배지 아산화질소 배출에 대한 질소비료와 바이오차 시용 효과 vol.39, pp.4, 2018, https://doi.org/10.5338/kjea.2020.39.4.35