DOI QR코드

DOI QR Code

Hydrodynamics and design of gas distributor in large-scale amine absorbers using computational fluid dynamics

  • Received : 2017.09.04
  • Accepted : 2018.01.11
  • Published : 2018.05.31

Abstract

A gas phase three-dimensional (3D) computational fluid dynamics (CFD) model was developed to investigate the hydrodynamics of gas distributors used in an amine absorber with a diameter of 3.2 m. A standard gas inlet, tubular injectors with short, medium and long lengths, and a Schoepentoeter were considered as feed systems of the gas distributors. The pressure drop, dead-area ratio and coefficient of distribution at the packing entry were used as the performance indexes of the gas distributors. The down-pipe as a liquid collector exhibited a lower dead-area ratio when compared with that of the down-comer. The tubular gas injector with a short length reduced the dead-area ratio and the gas maldistribution. The Schoepentoeter was associated with the lowest pressure drop, dead-area ratio, and coefficient of distribution among the gas distributors. The uniformity of gas distribution was enhanced by 25% in the Schoepentoeter when compared to that of the tubular gas injector.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea (NRF)

References

  1. M.K. Mondal, H.K. Balsora and P. Varshney, Energy, 46, 431 (2012). https://doi.org/10.1016/j.energy.2012.08.006
  2. M. Wang, A. Lawal, P. Stephenson, J. Sidders and C. Ramshaw, Chem. Eng. Res. Des., 89, 1609 (2011). https://doi.org/10.1016/j.cherd.2010.11.005
  3. J. H. Lee, N. S. Kwak, I.Y. Lee, K.R. Jang, D.W. Lee, S. G. Jang, B. K. kim and J.-G. Shim, Korean J. Chem. Eng., 32, 800 (2015). https://doi.org/10.1007/s11814-014-0267-0
  4. M. Zaman and J. H. Lee, Korean J. Chem. Eng., 30, 1497 (2013). https://doi.org/10.1007/s11814-013-0127-3
  5. A. Aroonwilas, A. Chakma, P. Tontiwachwuthikul and A. Veawab, Chem. Eng. Sci., 58, 4037 (2003). https://doi.org/10.1016/S0009-2509(03)00315-4
  6. M. Wehrli, S. Hirschberg and R. Schweizer, Chem. Eng. Res. Des., 81, 116 (2003). https://doi.org/10.1205/026387603321158267
  7. T. Petrova, N. Vaklieva-Bancheva, S. Darakchiev and R. Popov, Clean Technol. Environ., 16, 1381 (2014). https://doi.org/10.1007/s10098-014-0771-2
  8. A. Gorak and Z. Olujic, Distillation: Equipment and Processes, Academic Press, London (2014).
  9. Z. Olujic, A. Mohamed Ali and P. J. Jansens, Chem. Eng. Process., 43, 465 (2004). https://doi.org/10.1016/S0255-2701(03)00135-1
  10. J. F. Billingham, D.P. Bonaquist and M. J. Lockett, Institution of Chemical Engineers Symposium Series, 142, 841 (1997).
  11. M.T. Dhotre and J. B. Joshi, Can. J. Chem. Eng., 81, 677 (2003).
  12. T. Petrova, K. Semkov and C. Dodev, Chem. Eng. Process., 42, 931 (2003). https://doi.org/10.1016/S0255-2701(02)00184-8
  13. M.T. Dhotre and J. B. Joshi, Chem. Eng. J., 125, 149 (2007). https://doi.org/10.1016/j.cej.2006.08.027
  14. D. P. Edwards, K.R. Krishnamurthy and R.W. Potthoff, Chem. Eng. Res. Des., 77, 656 (1999). https://doi.org/10.1205/026387699526593
  15. R. Darakchiev and C. Dodev, Chem. Eng. Process., 41, 385 (2002). https://doi.org/10.1016/S0255-2701(01)00151-9
  16. C. Stemich and L. Spiegel, Chem. Eng. Res. Des., 89, 1392 (2011). https://doi.org/10.1016/j.cherd.2011.02.022
  17. G. Mosca, P. Schaeffer and B. Griepsma, Sulzer Technical Review, 3, 6 (2010).
  18. J. Kim, D. A. Pham and Y.-I. Lim, Chem. Eng. Res. Des., 121, 99 (2017). https://doi.org/10.1016/j.cherd.2017.03.008
  19. A. Mohamed Ali, P. J. Jansens and Z. Olujic, Chem. Eng. Res. Des., 81, 108 (2003). https://doi.org/10.1205/026387603321158258
  20. T. Zarei, E. Abedini, R. Rahimi and J. Khorshidi, Korean J. Chem. Eng., 34, 969 (2017). https://doi.org/10.1007/s11814-017-0004-6
  21. S. Chen, Y. Fan, Z. Yan, W. Wang, X. Liu and C. Lu, Chem. Eng. Sci., 153, 58 (2016). https://doi.org/10.1016/j.ces.2016.07.003
  22. S. I. Ngo, Y.-I. Lim, B.-H. Song, U.-D. Lee, J.-W. Lee and J.-H. Song, Powder Technol., 275, 188 (2015). https://doi.org/10.1016/j.powtec.2015.02.017
  23. S. I. Ngo, Y.-I. Lim, M.-H. Hahn, J. Jung and Y.-H. Bang, Comput. Chem. Eng., 103, 58 (2017). https://doi.org/10.1016/j.compchemeng.2017.03.007
  24. H. H. Pham, Y.-i. Lim, C.-H. Cho and Y.-H. Bang, Chem. Eng. Res. Des., 128, 192 (2017). https://doi.org/10.1016/j.cherd.2017.09.037
  25. T. H. Shih, W.W. Liou, A. Shabbir, Z. Yang and J. Zhu, Comput. Fluids, 24, 227 (1995). https://doi.org/10.1016/0045-7930(94)00032-T
  26. M. I. Kim, Y. Lee, B.W. Kim, D.H. Lee and W.S. Song, Korean J. Chem. Eng., 26, 359 (2009). https://doi.org/10.1007/s11814-009-0060-7
  27. Z. Olujic, Chinese J. Chem. Eng., 19, 726 (2011). https://doi.org/10.1016/S1004-9541(11)60049-9

Cited by

  1. Multiscale Eulerian CFD of Chemical Processes: A Review vol.4, pp.2, 2018, https://doi.org/10.3390/chemengineering4020023
  2. 바라쿠다 시뮬레이션을 이용한 유동층 외부 열교환기의 유동해석 vol.58, pp.4, 2018, https://doi.org/10.9713/kcer.2020.58.4.642
  3. 기포유동층 고분자 중합 반응기에서의 슬러그 특성 vol.58, pp.4, 2020, https://doi.org/10.9713/kcer.2020.58.4.651
  4. The investigation of gas distributor in column inlet section based on topology optimization vol.248, pp.no.pa, 2018, https://doi.org/10.1016/j.ces.2021.117148