DOI QR코드

DOI QR Code

A Methodology of Ship Detection Using High-Resolution Satellite Optical Image

고해상도 광학 인공위성 영상을 활용한 선박탐지 방법

  • Park, Jae-Jin (Department of Science Education, Seoul National University) ;
  • Oh, Sangwoo (Maritime Safety Research Division, Korea Research Institute of Ships and Ocean engineering) ;
  • Park, Kyung-Ae (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University) ;
  • Lee, Min-Sun (Department of Science Education, Seoul National University) ;
  • Jang, Jae-Cheol (Department of Science Education, Seoul National University) ;
  • Lee, Moonjin (Maritime Safety Research Division, Korea Research Institute of Ships and Ocean engineering)
  • 박재진 (서울대학교 과학교육과) ;
  • 오상우 (선박해양플랜트연구소 해양안전연구부) ;
  • 박경애 (서울대학교 지구과학교육과/해양연구소) ;
  • 이민선 (서울대학교 과학교육과) ;
  • 장재철 (서울대학교 과학교육과) ;
  • 이문진 (선박해양플랜트연구소 해양안전연구부)
  • Received : 2018.06.19
  • Accepted : 2018.06.25
  • Published : 2018.06.30

Abstract

As the international trade increases, vessel traffics around the Korean Peninsula are also increasing. Maritime accidents hence take place more frequently in the southern coast of Korea where many big and small ports are located. Accidents involving ship collision and sinking result in a substantial human and material damage as well as the marine environmental pollution. Therefore, it is necessary to locate the ships quickly when such accidents occur. In this study, we suggest a new ship detection index by comparing and analyzing the reflectivity of each channel of the Korea MultiPurpose SATellite-2 (KOMPSAT-2) images of the area around the Gwangyang Bay. A threshold value of 0.1 is set based on a histogram analysis, and all vessels are detected when compared with RGB composite images. After selecting a relatively large ship as a representative sample, the distribution of spatial reflectivity around the ship is studied. Uniform shadows are detected on the northwest side of the vessel. This indicates that the sun is in the southeast, the azimuth of the actual satellite image is $144.80^{\circ}$, and the azimuth angle of the sun can be estimated using the shadow position. The reflectivity of the shadows is 0.005 lower than the surrounding sea and ship. The shadow height varies with the position of the bow and the stern, perhaps due to the relative heights of the ship deck and the structure. The results of this study can help search technology for missing vessels using optical satellite images in the event of a marine accident around the Korean Peninsula.

국제 해상교통량 및 물동량이 증가함에 따라 한반도 주변해역의 선박유동량도 늘어나고 있으며 이에 따라 크고 작은 항구가 위치하고 있는 남해에서의 해양 사고도 꾸준히 발생하고 있다. 특히 선박간의 충돌 및 침몰 사고는 인적 및 물적 피해뿐만 아니라 해양환경오염을 유발하기 때문에 광역의 범위를 고해상도로 볼 수 있는 인공위성을 통한 신속한 선박탐지가 필요하다. 본 연구에서는 광학 인공위성 아리랑 2호 관측자료를 활용하여 광양만 인근해역의 각 채널별 반사도 값을 비교 분석하여 새로운 선박탐지지수를 제시하였다. 선박 분류를 위해 그 선박탐지지수의 역치를 0.1로 설정하였고, RGB 합성영상과 비교하였을 때 대다수의 선박을 탐지하였음을 보여주었다. 연구해역에 포함되어 있는 큰 규모의 선박을 선정 후, 선박 주변의 공간적 반사도 분포를 분석하였다. 그 결과 선박 북서방향에 위치한 균일한 형태의 선박그림자를 확인할 수 있었다. 이는 태양의 위치가 남동방향에 위치하고 있음을 나타내고 있으며, 실제 위성영상이 촬영된 시기의 방위각은 $144.80^{\circ}$로 영상내의 그림자의 위치를 통해 태양의 방위각을 유추할 수 있다. 그림자의 반사도는 주변 바다 및 선박에 비해 낮은 0.005 값을 나타냈고, 선수 및 선미에 따라 높이차가 달라짐을 보였다. 이는 선박의 갑판 및 구조물의 높이를 반영한 것으로 판단된다. 본 연구 결과는 연안 해상사고 발생 시 실종선박 수색기술에 고해상도 광학 인공위성 영상이 활용될 수 있음에 의의가 있다.

Keywords

References

  1. Cheng, G. and Han, J., 2016, A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11-28. https://doi.org/10.1016/j.isprsjprs.2016.03.014
  2. Corbane, C., Najman, L., Pecoul, E., Demagistri, L., and Petit, M., 2010, A complete processing chain for ship detection using optical satellite imagery. International Journal of Remote Sensing, 31(22), 5837-5854. https://doi.org/10.1080/01431161.2010.512310
  3. Homayouni, S. and Roux, M., 2004, Hyperspectral image analysis for material mapping using spectral matching. In ISPRS Congress Proceedings, Vol(20).
  4. Kim, M., Yim, U. H., Hong, S. H., Jung, J. H., Choi, H. W., An, J., and Shim, W. J., 2010, Hebei Spirit oil spill monitored on site by fluorometric detection of residual oil in coastal waters off Taean, Korea. Marine pollution bulletin, 60(3), 383-389. https://doi.org/10.1016/j.marpolbul.2009.10.015
  5. Kim, T. S., Park, K. A., Li, X., Lee, M., Hong, S., Lyu, S. J., and Nam, S., 2015, Detection of the Hebei Spirit oil spill on SAR imagery and its temporal evolution in a coastal region of the Yellow Sea. Advances in Space Research, 56(6), 1079-1093. https://doi.org/10.1016/j.asr.2015.05.040
  6. Liao, M., Wang, C., Wang, Y., and Jiang, L., 2008, Using SAR images to detect ships from sea clutter. IEEE Geoscience and Remote Sensing Letters, 5(2), 194-198. https://doi.org/10.1109/LGRS.2008.915593
  7. Lee, E. B., Yun, J. H., and Chung, S. T., 2012, A study on the development of the response resource model of hazardous and noxious substances based on the risks of marine accidents in Korea. Journal of Navigation and Port Research, 36(10), 857-864. https://doi.org/10.5394/KINPR.2012.36.10.857
  8. Lee, M., and Oh, S., 2014, Development of Response Scenario for a Simulated HNS Spill Incident. Journal of the Korean Society of Marine Environment and Safety, 20(6), 677-684. https://doi.org/10.7837/kosomes.2014.20.6.677
  9. Lee, M. S., Park, K. A., Lee, H. R., Park, J. J., Kang, C. K., and Lee, M., 2016, Detection and dispersion of thick and film-like oil spills in a coastal bay using satellite optical images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11), 5139-5150. https://doi.org/10.1109/JSTARS.2016.2577597
  10. Lee, S. G., Jin, C. G., Choi, C. U., Lim, H. S., Kim, Y., and Kim, J., 2012, Absolute radiometric calibration of the KOMPSAT-2 multispectral camera using a reflectance-based method and empirical comparison with IKONOS and QuickBird images. Journal of Applied Remote Sensing, 6(1), 063594. https://doi.org/10.1117/1.JRS.6.063594
  11. Melsheimer, C., H. Lim, and C. Shen., 1999, Observation and analysis of ship wakes in ERS SAR and SPOT images. Proc. 20th Asian Conf. Remote Sensing: 1:554-559.
  12. Park, J. J., Oh, S., Park, K. A., Foucher, P. Y., Jang, J. C., Lee, M., Kim, T. S., and Kang, W. S., 2017, The Ship Detection Using Airborne and In-situ Measurements Based on Hyperspectral Remote Sensing. Journal of the Korean Earth Science Society, 38(7), 535-545. https://doi.org/10.5467/JKESS.2017.38.7.535
  13. Proia, N. and Page, V., 2010, Characterization of a bayesian ship detection method in optical satellite images. IEEE Geoscience and Remote Sensing Letters, 7(2), 226-230. https://doi.org/10.1109/LGRS.2009.2031826
  14. Rabus, B., Eineder, M., Roth, A., and Bamler, R., 2003, The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar. ISPRS journal of photogrammetry and remote sensing, 57(4), 241-262. https://doi.org/10.1016/S0924-2716(02)00124-7
  15. Seo, D. C., Yang, J. Y., Lee, D. H., Song, J. H., and Lim, H. S., 2008, Kompsat-2 direct sensor modeling and geometric calibration/validation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37.
  16. Song, S. P., Cho, D. J., Park, S. G., Hong, C. E., Park, S. H., and Suh, S. H., 2013, Design of Transportation Safety system with GPS Precise Point Positioning. Journal of Navigation and Port Research, 37(1), 71-77. https://doi.org/10.5394/KINPR.2013.37.1.71
  17. Tang, J., Deng, C., Huang, G. B., and Zhao, B., 2015, Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1174-1185. https://doi.org/10.1109/TGRS.2014.2335751
  18. Vanem, E., Antao, P., Ostvik, I., and de Comas, F. D. C., 2008, Analysing the risk of LNG carrier operations. Reliability Engineering and System Safety, 93(9), 1328-1344. https://doi.org/10.1016/j.ress.2007.07.007
  19. Wackerman, C. C., Friedman, K. S., Pichel, W. G., Clemente-Colon, P., and Li, X. I. A. O. F. E. N. G., 2001, Automatic detection of ships in RADARSAT-1 SAR imagery. Canadian Journal of Remote Sensing, 27(5), 568-577. https://doi.org/10.1080/07038992.2001.10854896
  20. Wang, B., Ono, A., Muramatsu, K., and Fujiwara, N., 1999, Automated detection and removal of clouds and their shadows from Landsat TM images. IEICE Transactions on information and systems, 82(2), 453-460.
  21. Yang, G., Li, B., Ji, S., Gao, F., and Xu, Q., 2014, Ship detection from optical satellite images based on sea surface analysis. IEEE Geoscience and Remote Sensing Letters, 11(3), 641-645. https://doi.org/10.1109/LGRS.2013.2273552
  22. Yokoya, N. and Iwasaki, A., 2015, Object detection based on sparse representation and Hough voting for optical remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5), 2053-2062. https://doi.org/10.1109/JSTARS.2015.2404578
  23. Zhang, H., Sun, K., and Li, W., 2014, Object-oriented shadow detection and removal from urban high-resolution remote sensing images. IEEE transactions on geoscience and remote sensing, 52(11), 6972-6982. https://doi.org/10.1109/TGRS.2014.2306233
  24. Zhu, C., Zhou, H., Wang, R., and Guo, J., 2010, A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Transactions on geoscience and remote sensing, 48(9), 3446-3456. https://doi.org/10.1109/TGRS.2010.2046330

Cited by

  1. Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map vol.32, pp.6, 2018, https://doi.org/10.13047/KJEE.2018.32.6.686