DOI QR코드

DOI QR Code

Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds

미계측유역의 수문모형 매개변수 추정을 위한 하이브리드 지역화모형의 개발

  • Kim, Youngil (Institute of Health and Environment, Seoul National University) ;
  • Seo, Seung Beom (Institute of Engineering Research, Seoul National University) ;
  • Kim, Young-Oh (Department of Civil and Environmental Engineering, Seoul National University)
  • 김영일 (서울대학교 보건대학원) ;
  • 서승범 (서울대학교 공학연구원) ;
  • 김영오 (서울대학교 공과대학 건설환경공학부)
  • Received : 2018.03.20
  • Accepted : 2018.06.04
  • Published : 2018.08.31

Abstract

There remain numerous ungauged watersheds in Korea owing to limited spatial and temporal streamflow data with which to estimate hydrological model parameters. To deal with this problem, various regionalization approaches have been proposed over the last several decades. However, the results of the regionalization models differ according to climatic conditions and regional physical characteristics, and the results of the regionalization models in previous studies are generally inconclusive. Thus, to improve the performance of the regionalization methods, this study attaches hydrological model parameters obtained using a spatial proximity model to the explanatory variables of a regional regression model and defines it as a hybrid regionalization model (hybrid model). The performance results of the hybrid model are compared with those of existing methods for 37 test watersheds in South Korea. The GR4J model parameters in the gauged watersheds are estimated using a shuffled complex evolution algorithm. The variation inflation factor is used to consider the multicollinearity of watershed characteristics, and then stepwise regression is performed to select the optimum explanatory variables for the regression model. Analysis of the results reveals that the highest modeling accuracy is achieved using the hybrid model on RMSE overall the test watersheds. Consequently, it can be concluded that the hybrid model can be used as an alternative approach for modeling ungauged watersheds.

수문모형의 매개변수 추정에 필요한 유량 관측 자료의 수집은 시 공간적으로 제한이 있어 우리나라도 아직 상당수의 미계측유역이 존재하며, 이를 보완하고자 주변 유역의 정보를 활용하는 지역화 방법들이 연구되어 왔다. 그러나 지역적 특성이나 기후 조건에 따라 지역화 방법의 결과가 상이하여 어느 지역에 어떠한 지역화 방법이 가장 우수하다고 판단하기 어렵다. 본 연구에서는 보편적으로 사용되는 지역화 방법인 지역회귀모형의 설명변수에 공간근접모형으로 추정한 수문모형의 매개변수를 추가하여 회귀모형의 적합성을 향상시켰으며, 이를 하이브리드 지역화모형이라 정의하고 기존 방법들과 비교하였다. 계측유역으로는 관측 자료가 충분한 남한의 37개 유역을 선정하였고, 수문모형은 개념적 수문모형인 GR4J를 사용하였으며, 계측유역에 대한 수문모형의 매개변수 산정은 Shuffled complex evolution 알고리즘을 사용하였다. 유역 특성변수들 간 다중공선성을 고려하기 위해 Variation inflation factor를 사용하였고, Stepwise regression을 통해 회귀모형의 최적 설명변수를 선택하였다. 통계 값을 통해 모형의 적합성을 비교한 결과, 하이브리드 지역화모형에서 가장 작은 RMSE 값을 나타내었으며, 유역별 모의 값의 변동성이 줄어들어 결과의 불확실성 또한 낮아짐을 확인할 수 있었다. 따라서 하이브리드 모형이 미계측유역의 유출량 산정을 위한 하나의 대안이 될 수 있음을 확인하였다.

Keywords

References

  1. Ajami, N. K., Duan, Q., Gao, X., and Sorooshian, S. (2006). "Multi-model combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results." Journal of Hydrometeorology, Vol. 7, No. 4, pp. 755-768. https://doi.org/10.1175/JHM519.1
  2. Andrews, F. T., Croke, B. F., and Jakeman, A. J. (2011). "An open software environment for hydrological model assessment and development." Environmental Modelling and Software, Vol. 26, No. 10, pp. 1171-1185. https://doi.org/10.1016/j.envsoft.2011.04.006
  3. Duan, Q., Ajami, N. K., Gao, X., and Sorooshian, S. (2007). "Multi-model ensemble hydrologic prediction using Bayesian model averaging." Advances in Water Resources, Vol. 30, No. 5, pp. 1371-1386. https://doi.org/10.1016/j.advwatres.2006.11.014
  4. Goswami, M., O'connor, K. M., and Bhattarai, K. P. (2007). "Development of regionalisation procedures using a multi-model approach for flow simulation in an ungauged catchment." Journal of Hydrology, Vol. 333, No. 2, pp. 517-531. https://doi.org/10.1016/j.jhydrol.2006.09.018
  5. Gottschalk, L., Jensen, J. L., Lundquist, D., Solantie, R., and Tollan, A. (1979). "Hydrologic regions in the Nordic countries." Hydrology Research, Vol. 10, No. 5, pp. 273-286. https://doi.org/10.2166/nh.1979.0010
  6. Jakeman, A. J., and Hornberger, G. M. (1993). "How much complexity is warranted in a rainfall runoff model?" Water Resources Research, Vol. 29, No. 8, pp. 2637-2649. https://doi.org/10.1029/93WR00877
  7. Jeong, D. I., and Kim, Y.-O. (2009). "Combining single-value streamflow forecasts - A review and guidelines for selecting techniques." Journal of Hydrology, Vol. 377, No. 3, pp. 284-299. https://doi.org/10.1016/j.jhydrol.2009.08.028
  8. Jin, X., Xu, C. Y., Zhang, Q., and Chen, Y. D. (2009). "Regionalization study of a conceptual hydrological model in Dongjiang basin, south China." Quaternary International, Vol. 208, No. 1, pp. 129-137. https://doi.org/10.1016/j.quaint.2008.08.006
  9. Kay, A. L., Jones, D. A., Crooks, S. M., Calver, A., and Reynard, N. S. (2006). "A comparison of three approaches to spatial generalization of rainfall-runoff models." Hydrological Processes, Vol. 20, No. 18, pp. 3953-3973. https://doi.org/10.1002/hyp.6550
  10. Kim, S. U., and Lee, K. S. (2008). "Regional low flow frequency analysis using bayesian multiple regression." Journal of Korea Water Resources Association, Vol. 41, No. 3, pp. 325-340. https://doi.org/10.3741/JKWRA.2008.41.3.325
  11. Kim, T. J., Jeong, G. I., Kim, K. Y., and Kwon, H. H. (2015). "A study on regionalization of parameters for sacramento continuous rainfall-runoff model using watershed characteristics." Journal of Korea Water Resources Association, Vol. 48, No. 10, pp. 793-806. https://doi.org/10.3741/JKWRA.2015.48.10.793
  12. Lebecherel, L., Andréassian, V., and Perrin, C. (2016). "On evaluating the robustness of spatial-proximity-based regionalization methods." Journal of Hydrology, Vol. 539, pp. 196-203. https://doi.org/10.1016/j.jhydrol.2016.05.031
  13. Merz, R., and Blöschl, G. (2004). "Regionalisation of catchment model parameters." Journal of Hydrology, Vol. 287, No. 1, pp. 95-123. https://doi.org/10.1016/j.jhydrol.2003.09.028
  14. Moon, J. W., Jung, C. G., and Lee, D. R. (2013). "Parameter regionalization of Hargreaves equation based on climatological characteristics in Korea." Journal of Korea Water Resources Association, Vol. 46, No. 9, pp. 933-946. https://doi.org/10.3741/JKWRA.2013.46.9.933
  15. Oudin, L., Andreassian, V., Perrin, C., Michel, C., and Le Moine, N. (2008). "Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments." Water Resources Research, Vol. 44, No. 3, W03413. https://doi.org/10.1029/2007WR006240
  16. Parajka, J., Merz, R., and Bloschl, G. (2005). "A comparison of regionalisation methods for catchment model parameters." Hydrology and Earth System Sciences Discussions, Vol. 9, No. 3, pp. 157-171. https://doi.org/10.5194/hess-9-157-2005
  17. Perrin, C., Michel, C., and Andreassian, V. (2003). "Improvement of a parsimonious model for streamflow simulation." Journal of Hydrology, Vol. 279, No. 1, pp. 275-289. https://doi.org/10.1016/S0022-1694(03)00225-7
  18. Perrin, C., Oudin, L., Andreassian, V., Rojas-Serna, C., Michel, C., and Mathevet, T. (2007). "Impact of limited streamflow data on the efficiency and the parameters of rainfall-runoff models." Hydrological Sciences Journal, Vol. 52, No. 1, pp. 131-151. https://doi.org/10.1623/hysj.52.1.131
  19. Post, D. A., and Jakeman, A. J. (1999). "Predicting the daily streamflow of ungauged catchments in SE Australia by regionalising the parameters of a lumped conceptual rainfall-runoff model." Ecological Modelling, Vol. 123, No. 2, pp. 91-104. https://doi.org/10.1016/S0304-3800(99)00125-8
  20. Pugliese, A., Farmer, W. H., Castellarin, A., Archfield, S. A., and Vogel, R. M. (2016). "Regional flow duration curves: Geostatistical techniques versus multivariate regression." Advances in Water Resources, Vol. 96, pp. 11-22. https://doi.org/10.1016/j.advwatres.2016.06.008
  21. Razavi, T., and Coulibaly, P. (2012). "Streamflow prediction in ungauged basins: review of regionalization methods." Journal of Hydrologic Engineering, Vol. 18, No. 8, pp. 958-975. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690
  22. Samuel, J., Coulibaly, P., and Metcalfe, R. A. (2011). "Estimation of continuous streamflow in Ontario ungauged basins: Comparison of regionalization methods." Journal of Hydrologic Engineering, Vol. 16, No. 5, pp. 447-459. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000338
  23. Seibert, J. (1999). "Regionalisation of parameters for a conceptual rainfall-runoff model." Agricultural and Forest Meteorology, Vol. 98-99, pp. 279-293. https://doi.org/10.1016/S0168-1923(99)00105-7
  24. Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E. M., O'connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S., and Zehe, E. (2003). "IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences." Hydrological Sciences Journal, Vol. 48, No. 6, pp. 857-880. https://doi.org/10.1623/hysj.48.6.857.51421
  25. Stoll, S., and Weiler, M. (2010). "Explicit simulations of stream networks to guide hydrological modelling in ungauged basins." Hydrology and Earth System Sciences, Vol. 14, No. 8, pp. 1435-1448. https://doi.org/10.5194/hess-14-1435-2010
  26. The R Project (1997). accessed 1 April 1997, .
  27. Vandewiele, G. L., Xu, C. Y., and Huybrechts, W. (1991). "Regionalisation of physically-based water balance models in Belgium. Application to ungauged catchments." Water Resources Management, Vol. 5, No. 3, pp. 199-208. https://doi.org/10.1007/BF00421989
  28. Viviroli, D., and Seibert, J. (2015). "Can a regionalized model parameterisation be improved with a limited number of runoff measurements?" Journal of Hydrology, Vol. 529, pp. 49-61. https://doi.org/10.1016/j.jhydrol.2015.07.009
  29. Vogel, R. M., Wilson, I., and Daly, C. (1999). "Regional regression models of annual streamflow for the United States." Journal of Irrigation and Drainage Engineering, Vol. 125, No. 3, pp. 148-157. https://doi.org/10.1061/(ASCE)0733-9437(1999)125:3(148)
  30. Yadav, M., Wagener, T., and Gupta, H. (2007). "Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins." Advances in Water Resources, Vol. 30, No. 8, pp. 1756-1774. https://doi.org/10.1016/j.advwatres.2007.01.005
  31. Yapo, P. O., Gupta, H. V., and Sorooshian, S. (1996). "Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data." Journal of Hydrology, Vol. 181, No. 1-4, pp. 23-48. https://doi.org/10.1016/0022-1694(95)02918-4
  32. Young, A. R. (2006). "Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model." Journal of Hydrology, Vol. 320, No. 1, pp. 155-172. https://doi.org/10.1016/j.jhydrol.2005.07.017