DOI QR코드

DOI QR Code

Removal of Pb(II) from Aqueous Solution Using Hybrid Adsorbent of Sericite and Spent Coffee Grounds

견운모와 커피찌꺼기 복합 흡착제를 이용한 수용액의 Pb(II) 제거

  • Choi, Hee-Jeong (Department of Health and Environment, Catholic Kwandong University)
  • 최희정 (가톨릭 관동대학교 보건환경학과)
  • Received : 2018.06.01
  • Accepted : 2018.07.06
  • Published : 2018.10.10

Abstract

In this study, hybrid adsorbents (SS) were prepared by mixing spent coffee grounds (SCG) and sericite, a kind of clay minerals, to adsorb Pb(II) from an aqueous solution. In FT-IR analyses, the main functional groups of SS adsorbents were O-H, C=O and C-N groups. The specific surface area, cation exchange capacity and the pore diameter of SS were larger than those of using SCG and sericite. Formation conditions of the SS adsorbent were the optimum pyrolysis temperature of $300^{\circ}C$, SCG : sericite ratio of 8 : 2, and particle size of 0.3 mm. Langmuir adsorption isotherm was more suitable than Freundlich one, and the maximum adsorption capacity was reached 44.42 mg/g. As a result of the adsorption thermodynamic analysis, the adsorption of Pb(II) onto SS was the physical adsorption and exothermic process in nature. The regeneration of SS adsorbent using distilled water showed 88~92% recovery and the active site of SS adsorbent decreased with increasing the reuse cycle time. As a result, SS adsorbent showed that it can be used to remove Pb(II) easily, inexpensively and efficiently without any pre-treatment from aqueous solutions.

본 연구에서는 수용액에서 Pb(II)를 흡착 제거하기 위하여 커피찌꺼기(spent coffee grounds; SCG)와 점토광물인 견운모(sericite)를 혼합하여 복합흡착제(SS)를 제조하였다. FT-IR 분석결과 SS의 주요 관능기는 O-H, C=O와 C-N 그룹이었다. SS의 비표면적, 기공직경 그리고 양이온 치환 용량은 SCG와 sericite보다 크고, 높았다. SS 흡착제 제조를 위한 최적의 조건은 소성온도 $300^{\circ}C$, SCG : sericite 비율 8 : 2, 입자의 크기는 0.3 mm이었다. SS 흡착제를 이용하여 Pb(II)를 제거하기 위한 실험에서는 Langmuir 흡착식이 Freundlich보다 적합하였으며, Langmuir 등온흡착식에 의한 Pb(II)의 최대 흡착용량은 44.42 mg/g이었다. 또한, 열역학 분석에 의하면 SS 흡착제를 이용한 Pb(II)의 흡착 공정은 물리적인 흡착이었으며, 자연적인 발열반응이었다. SS 흡착제의 흡착-탈착 실험에서는 88-92%를 회수할 수 있었으나, 탈착 횟수가 증가할수록 SS 흡착제의 활성사이트는 감소하였다. 위의 실험결과 SS 흡착제는 전처리 없이 저렴하고, 효율적으로 Pb(II)를 수용액에서 흡착 제거할 수 있다.

Keywords

References

  1. H. J. Choi, Behavior of Pb(II) and Cd(II) Removal from aqueous solution by adsorption onto methyl-esterified sericite, KSWST J. Water Treat., 24(4), 87-100 (2016).
  2. S. W. Yu and H. J. Choi, Use of hybrid bead, tannin and chitosan, for treatment of Pb(II) from aqueous solution, KSWST J. Water Treat., 26(2), 53-64 (2018). https://doi.org/10.17640/KSWST.2018.26.2.53
  3. H. J. Choi, S. W. Yu, and K. H. Kim, Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions, J. Taiwan Inst. Chem. Eng., 63, 482-489 (2016). https://doi.org/10.1016/j.jtice.2016.03.005
  4. H. J. Choi and S. M. Lee, Heavy metal removal in the acid mine drainage using calcined eggshells and microalgae hybrid system, Environ. Sci. Pollut. Res., 22(17), 13404-13411 (2015). https://doi.org/10.1007/s11356-015-4623-3
  5. J. Goel, K. Kadirvelu, C. Rajagopal, Kumar, and V. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater., 125(1), 211-220 (2005). https://doi.org/10.1016/j.jhazmat.2005.05.032
  6. Z. Guo, J. Zhang, Y. Kang, and H. Liu, Rapid and efficient removal of Pb(II) from aqueous solutions using biomass-derived activated carbon with humic acid in-situ modification, Ecotoxicol. Environ. Saf., 145, 442-448 (2017). https://doi.org/10.1016/j.ecoenv.2017.07.061
  7. B. G. Alhogbi, Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions, Sustain Chem. Pharm., 6, 21-25 (2017). https://doi.org/10.1016/j.scp.2017.06.004
  8. S. Y. Lee and H. J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution, J. Environ. Manag., 209, 382-392 (2018). https://doi.org/10.1016/j.jenvman.2017.12.080
  9. G. Z. Kyzas, Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions, Materials, 5, 1826-1840 (2012). https://doi.org/10.3390/ma5101826
  10. F. J. Cerino-Cordova, P. E. Diaz-Flores, R. B. Garcia-Reyes, E. Soto-Regalado, R. Gomez-Gonzalez, M. T. Garza-Gonzalez, and E. Bustamante-Alcantara, Biosorption of Cu(II) and Pb(II) from aqueous solutions by chemically modified spent coffee grains, Int. J. Environ. Sci. Technol., 10, 611-622 (2013). https://doi.org/10.1007/s13762-013-0198-z
  11. H. G. Alemayehu, A. K. Burkute, and A. G. Ede, Adsorptive removal of Pb(II) and Cr(VI) from wastewater using acid untreated coffee husk, Interlink Cont. J. Environ. Sci. Toxicol., 1, 9-16 (2014).
  12. F. R. Oliveira, A. K. Patel, D. P. Jaisi, S. Adhikari, H. Lu, and S. K. Khanal, Environmental application of biochar: Current status and perspectives, Bioresour. Technol., 246, 110-122 (2017). https://doi.org/10.1016/j.biortech.2017.08.122
  13. R. Gomez-Gonzalez, F. J. Cerino-Cordova, A. M. Garcia-Leon, E. Soto-Regalado, N. E. Davila-Guzman, and J. J. Salazar-Rabago, Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN, J. Taiwan Inst. Chem. Eng., 68, 201-210 (2016). https://doi.org/10.1016/j.jtice.2016.08.038
  14. C. Jeon, Adsorption and recovery of immobilized coffee ground beads for silver ions from industrial wastewater, J. Ind. Eng. Chem., 53, 261-267 (2017). https://doi.org/10.1016/j.jiec.2017.04.034
  15. S. Berhe, D. Ayele, A. Tadesse, and A. Mulu, Adsorption efficiency of coffee husk for removal of lead(II) from industrial effluents: equilibrium and kinetic study, Int. J. Sci. Res. Publ., 5, 1-8 (2015).
  16. H. J. Choi and K. H. Kim, Parametric study a dyeing wastewater treatment by modified sericite, Environm. Technol., 37(20), 2572-2579 (2016).
  17. I. Anastopoulos, M. Karamesouti, A. C. Mitropoulos, and G. Z. Kyzas, A review for coffee adsorbents, J. Mol. Liq., 229, 555-565 (2017). https://doi.org/10.1016/j.molliq.2016.12.096
  18. F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manag., 92(3), 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  19. N. Azouaou, Z. Sadaoui, A. Djaafri, and H. Mokaddem, Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 184(1-3), 126-134 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.014
  20. A. S. Franca, L. S. Oliveira, and M. E. Ferreira, Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds, Desalination, 249(1), 267-272 (2009). https://doi.org/10.1016/j.desal.2008.11.017
  21. H. J. Choi, Biosorption of heavy metals from acid mine drainage by modified sericite and microalgae hybrid system, Water Air Soil Pollut., 226(6), 1-8 (2015).
  22. C. H. Wu, C. Y. Kuo, and S. S. Guan, Adsorption kinetics of lead and zinc ions by coffee residues, Pol. J. Environ. Stud., 24, 761-767 (2015).
  23. M. Ghasemi, M. Naushad, N. Ghasemi, and Y. Khosravi-fard, Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: Adsorption isotherm and kinetic studies, J. Ind. Eng. Chem., 20(4), 2193-2199 (2014). https://doi.org/10.1016/j.jiec.2013.09.050
  24. J. Anwar, U. Shafique, W. Zaman, M. Salman, A. Dar, and A. Shafique, Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana, Bioresour. Technol., 101, 1752-1755 (2010). https://doi.org/10.1016/j.biortech.2009.10.021
  25. A. A. Alghamdi, An investigation on the use of date palm fibers and coir pith as adsorbents for Pb(II) iones from its aqueous solution, Desalination Water Treat., 57(25), 12216-12226 (2015).
  26. S. Gupta, D. Kumar, and J. P. Gaur, Kinetic and isotherm modeling of Pb(II) sorption onto some waste plant materials, Chem. Eng. J., 148, 226-233 (2009). https://doi.org/10.1016/j.cej.2008.08.019
  27. H. D. Utomo, Lead adsorption onto various solid surfaces, Nat. Resour., 6, 152 (2015).
  28. R. Lafi, A. B. Fradj, A. Hafiane, and B. H. Hameed, Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution, Korean J. Chem. Eng., 31, 2198-2206 (2014). https://doi.org/10.1007/s11814-014-0171-7
  29. V. Boonamnuayvitaya, C. Chaiya, W. Tanthapanichakoon, and S. Jarudilokkul, Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay, Sep. Purif. Technol., 35, 11-22 (2004). https://doi.org/10.1016/S1383-5866(03)00110-2