DOI QR코드

DOI QR Code

Distribution Characteristics and Ecosystem Risk Assessment of Dotted Duckweed (Landoltis punctate) in Jeju Island, Korea

제주도 내 점개구리밥(Landoltiapunctate) 분포와 생태계 위해성 평가

  • Choi, Jong-Yun (Division of Ecological Assessment, National Institute of Ecology) ;
  • Kim, Nam-Young (Division of Ecological Conservation, National Institute of Ecology) ;
  • Ryu, Tae-Bok (Division of Ecological Conservation, National Institute of Ecology) ;
  • Choi, Dong-Hee (Division of Ecological Conservation, National Institute of Ecology) ;
  • Kim, Deokki (Division of Ecological Conservation, National Institute of Ecology) ;
  • Kim, Seong-Ki (Division of Ecological Assessment, National Institute of Ecology)
  • 최종윤 (국립생태원 생태평가연구실) ;
  • 김남영 (국립생태원 생태보전연구실) ;
  • 류태복 (국립생태원 생태보전연구실) ;
  • 최동희 (국립생태원 생태보전연구실) ;
  • 김덕기 (국립생태원 생태보전연구실) ;
  • 김성기 (국립생태원 생태평가연구실)
  • Received : 2018.02.21
  • Accepted : 2018.06.25
  • Published : 2018.08.31

Abstract

W investigated the environmental factors and inhabiting biota such as macrophytes and zooplankton in 43 sites located on Jeju Island from May and June 2017 to evaluate the spread and ecosystem risk of dotted duckweed (landoltia punctata) which was recently found for the first time in Jeju Island. Dotted duckweeds were found in a total of 18 sites which tended to show low biomass of aquatic macrophyte species other than the dotted duckweed. We conducted a pattern analysis using SOM (Self-Organizing Map), which extracts information through competitive and adaptive properties, to analyze the effect of inhabiting biota on aquatic macrophytes such as the dotted duckweed and environmental factors. The SOM analysis showed that the inhabiting biota such as the zooplankton affected the biomass of aquatic macrophytes than they did the environmental factors. In particular, the biomass of dotted duckweed was positively related to plant-attached species (Alona, Chydorus, and Pleuroxus). Considering that low density of aquatic macrophytes covers the streams and wetlands on Jeju Island because of irregular water source and sharp change of water depth, the dotted duckweeds are likely to play an essential role as the vital habitat for micro-biota including zooplankton in wetlands and streams on Jeju Island. Furthermore, considering that organic matters are utilized as the primary food source in the areas occupied by dotted duckweed, dotted duckweeds have the role of being both habitat and food source. Although the dense growth of dotted duckweed adversely affects growth and development of some aquatic plants due to the shadow effect, it is due to the dominance of floating plants on the water surface should not be regarded as the risk of the dotted duckweed. In conclusion, the dotted duckweeds have spread and settled in most of the water systems on Jeju Island, their impact on inhabiting biota and the aquatic environment was minor. It is necessary to monitor the distribution and spread of dotted duckweeds in the inland areas outside of Jeju Island in the future.

본 연구는 제주도 지역에서 처음 발견된 점개구리밥의 분포와 서식생물상에 대한 점개구리밥의 위해성을 평가하기 위해, 제주도 내 43개 습지 및 하천에서 환경요인과 서식생물상을 조사하였다. 점개구리밥은 43개 중 총 18개 조사지역에서 출현이 확인되었으며, 이들 지역에서는 점개구리밥 외 수생식물의 생물량은 낮은 편이었다. 점개구리밥 등 수생식물과 환경요인에 대한 서식생물상의 영향을 분석하기 위해 SOM(Self-Organizing Map)을 활용한 패턴분석을 실시하였다. 분석 결과, 동물플랑크톤 등 서식생물상은 환경요인보다는 수생식물의 생물량에 대한 영향이 큰 것으로 나타났다. 특히 점개구리밥의 생물량은 부착성 종과 밀접하게 관련되는 것으로 분석되었다. 제주도 내 하천 및 습지는 수원이 일정하지 않고 수위변화가 급격하여 수생식물의 현존량이 적은 점을 감안하면, 제주도 지역의 교란 특성에 비교적 강한 점개구리밥은 서식생물상(동물플랑크톤 등)에게 서식처로서 중요하게 적용될 것으로 판단된다. 더욱이, 점개구리밥의 점유 공간 내 유기물이 서식동물상의 먹이원으로 활용되는 점 등을 볼 때 점개구리밥은 서식처인 동시에 먹이터로의 역할을 수행하고 있는 것으로 보인다. 비록 점개구리밥의 밀생이 그늘 효과 등으로 일부 수생식물의 성장과 발달에 영향을 미치지만, 이것은 부유식물이 수표면에 우점하는 특성 때문이며, 점개구리밥의 위해성이라 판단하기는 어렵다. 결론적으로 점개구리밥은 제주도 지역 내 대부분의 수계에서 확산 및 정착된 것으로 조사되었으며, 서식생물상 및 수중 환경 내 미치는 영향은 적은 것으로 사료된다. 추후 제주도 지역 외 내륙에서의 점개구리밥 분포 및 확산에 대한 모니터링을 수행할 필요가 있다고 보여진다.

Keywords

References

  1. Arcifa, M.S., T.G. Northcote and O. Froehlich(1986) Fish-zooplankton interactions and their effects on water quality of a tropical Brazilian reservoir. Hydrobiologia 139(1): 49-58. https://doi.org/10.1007/BF00770241
  2. Castro, B.B., S.M. Marques and F. Goncalves(2007) Habitat selection and diel distribution of the crustacean zooplankton from a shallow Mediterranean lake during the turbid and clear water phases. Freshwater Biology 52: 421-433. https://doi.org/10.1111/j.1365-2427.2006.01717.x
  3. Cazzanelli, M., T.P. Warming and K.S. Christoffersen(2008) Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605: 113-122. https://doi.org/10.1007/s10750-008-9324-1
  4. Chen, Q., Y. Jin, G. Zhang, Y. Fang, Y. Xiao and H. Zhao(2012) Improving production of bioethanol from duckweed(Landoltia punctata) by pectinase pretreatment. Energies 5: 3019-3032. https://doi.org/10.3390/en5083019
  5. Choi, J.Y., K.S. Jeong, G.H. La, S.K. Kim and G.J. Joo(2014a) Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands(South Korea). Journal of Limnology 73: 11-16.
  6. Choi, J.Y., K.S. Jeong, G.H. La, S.K. Kim and G.J. Joo(2014b) Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland. Knowledge and Management of Aquatic Ecosystems 414: 11.
  7. Choi, J.Y., K.S. Jeong, S.K. Kim and G.J. Joo(2016) Impact of habitat heterogeneity on the biodiversity and density of the zooplankton community in shallow wetlands(Upo wetlands, South Korea). Oceanological and Hydrobiological Studies 45: 485-492.
  8. Choi, J.Y., S.K. Kim, S.W. Hong, K.S. Jeong, G.H. La and G.J. Joo(2013) Zooplankton community distribution and food web structure in small reservoirs: Influence of land uses around reservoirs and kittoral aquatic plant on zooplankton. Korean Journal of Ecology and Environment 46(3): 332-342. (in Korean with English abstract) https://doi.org/10.11614/KSL.2013.46.3.332
  9. Christie, H., K.M. Norderhaug and S. Fredriksen(2009) Macrophytes as habitat for fauna. Marine Ecology Progress Series 396: 221-234. https://doi.org/10.3354/meps08351
  10. Einsle, U.(1993) Crustacea: Copepoda, Calanoida und Cyclopoida (Vol. 4). Gustav Fischer Verlag.
  11. Engelhardt, K.A. and M.E. Ritchie(2001). Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687. https://doi.org/10.1038/35079573
  12. Ervin, G.N. and R.G. Wetzel(2002) Influence of a dominant macrophyte, Juncus effusus, on wetland plant species richness, diversity, and community composition. Oecologia: 130: 626-636. https://doi.org/10.1007/s00442-001-0844-x
  13. Jeppesen, E., J.P. Jensen, M. Sondergaard, T. Lauridsen, L.J. Pedersen and L. Jensen(1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151-164. https://doi.org/10.1023/A:1017046130329
  14. Jung, W.Y. and S.K. Yang(2008) Application of SWAT model on rivers in Jeju Island. Journal of the Environmental Science 17(9): 1039-1052. (in Korean with English abstract) https://doi.org/10.5322/JES.2008.17.9.1039
  15. Kohonen, T., J. Hynninen, J. Kangas and J. Laaksonen(1996) Som pak: The self-organizing map program package. Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science.
  16. Koschnick, T.J., W.T. Haller and L. Glasgow(2006). Documentation of landoltia(Landoltia punctata) resistance to diquat. Weed science 54: 615-619. https://doi.org/10.1614/WS-06-002R.1
  17. Koste, W.(1978) Rotatoria, die Radertiere Mitteleuropas: Uberordnung Monogononta: ein Bestimmungswerk(German Edition). 2nd ed. Gebruder Borntraeger, Stuttgart.
  18. Kuczynska-Kippen, N.(2007) Habitat choice in rotifera communities of three shallow lakes: impact of macrophyte substratum and season. Hydrobiologia 593(1): 27-37. https://doi.org/10.1007/s10750-007-9073-6
  19. Kuczynska-Kippen, N.M. and B. Nagengast(2006) The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203-212. https://doi.org/10.1007/s10750-005-0867-0
  20. Lauridsen, T., L.J. Pedersen, E. Jeppesen and M. Sonergaard(1996) The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research 18(12): 2283-2294. https://doi.org/10.1093/plankt/18.12.2283
  21. Lauridsen, T.L. and D.M. Lodge(1996) Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography 41: 794-798. https://doi.org/10.4319/lo.1996.41.4.0794
  22. Lee, J.Y., T. Yoshioks and T. Hanazoto(2002) Faunal trophic interaction in an oligotrophic-dystrophic lake(Shirakoma-ike, Japan). Limnology 3: 151-158. https://doi.org/10.1007/s102010200018
  23. Les, D.H. and D.J. Crawford(1999) Landoltia(Lemnaceae), a new genus of duckweeds. Novon 530-533.
  24. Manatunge, J., T. Aseada and T. Priyadarshana(2000) The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425-438. https://doi.org/10.1023/A:1007691425268
  25. Meerhoff, M., C. Iglesias, F.T. De Mello, J.M. Clemente, E. Jensen, T.L. Lauridsen and E. Jeppesen(2007) Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009-1021. https://doi.org/10.1111/j.1365-2427.2007.01748.x
  26. Meerhoff, M., N. Mazzeo, B. Moss and L. Rodriguez-Gallego (2003) The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377-391. https://doi.org/10.1023/B:AECO.0000007041.57843.0b
  27. Milstein, A., B. Hepher and B. Teltsch(1985) Principal component analysis of interactions between fish species and the ecological conditions in fish ponds: II. Zooplankton. Aquaculture Research 16: 319-330. https://doi.org/10.1111/j.1365-2109.1985.tb00074.x
  28. Mizuno, T. and E. Takahashi(1999) An illustrated guide to freshwater zooplankton in japan. Tokai University Press.
  29. Muylaert, K., C. Perez-Martinez, P. Sanchez-Castillo, T.L. Lauridsen, M. Vanderstukken, S.A.J. Declerck, K. Van der Gucht, J.M. Conde-Porcuna, E. Jeppesen, L. De Meester and W. Vyverman (2010) Influence of nutrients, submerged macrophytes and zooplankton grazing on phytoplankton biomass and diversity along a latitudinal gradient in Europe. Hydrobiologia 653: 79-90. https://doi.org/10.1007/s10750-010-0345-1
  30. NIER(National Institute of Environmental Research)(2012) Invasive Alien Species in Korea. National Institute of Environmental Research, Incheon.
  31. Ramesh, M.R., K.M. Shankar, C.V. Mohan and T.J. Varghese(1999) Comparison of three plant substrates for enhancing carp growth through bacterial biofilm. Aquacultural Engineering 19: 119-131. https://doi.org/10.1016/S0144-8609(98)00046-6
  32. Secretariat of the Convention on Biological Diversity(2010) Global Biodiversity Outlook 3. Montreal, Canada.
  33. Smirnov, N.N. and B.V. Timms(1983) A revision of the Australian Cladocera(Crustacea). Australian Museum, Sydney, Australia.
  34. Thomaz, S.M. and E.R.D. Cunha(2010). The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages' composition and biodiversity. Acta Limnologica Brasiliensia 22: 218-236. https://doi.org/10.4322/actalb.02202011
  35. van Donk E. and W.J. van de Bund(2002) Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261-274. https://doi.org/10.1016/S0304-3770(01)00205-4
  36. Warfe, D.M. and L.A. Barmuta(2004) Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171-178. https://doi.org/10.1007/s00442-004-1644-x
  37. Wetzel, R.G. and G.E. Likens(2000) Limnological Analyses. Springer-Verlag, New York.
  38. Zaret, T.M. and J.S. Suffern(1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnology and Oceanography 21(6): 804-813. https://doi.org/10.4319/lo.1976.21.6.0804