DOI QR코드

DOI QR Code

Durability of Nano-/micro- Pt Line Patterns Formed on Flexible Substrate

유연기판 위 형성된 나노-마이크로 Pt 금속선 패턴의 내구성 연구

  • Park, Tae Wan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Choi, Young Joong (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Park, Woon Ik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
  • 박태완 (한국세라믹기술원 전자융합소재본부) ;
  • 최영중 (한국세라믹기술원 전자융합소재본부) ;
  • 박운익 (한국세라믹기술원 전자융합소재본부)
  • Received : 2018.09.04
  • Accepted : 2018.09.28
  • Published : 2018.09.30

Abstract

Since various methods to form well-aligned nano-/micro- patterns are underlying technologies to fabricate next generation wearable electronic devices, many efforts have been made to realize finer patterns in recent years. Among lots of patterning methods, the present invention includes a nano-transfer printing (n-TP) process which is advantageous in that a processing cost is low and high-resolution patterns can be formed within a short processing time. We successfully achieved pattern formation of highly ordered Pt lines with line-width of 250 nm, 500 nm, and $1{\mu}m$ on transparent and flexible substrates. In addition, we analyzed the durability of the patterns, showing excellent stability of line-shape even after a physical and repeated bending test of 500 times using a bending machine. As a result, it is expected that a n-TP process is very useful for forming various metal patterns, and it is also expected to be applied to wiring and interconnection technology of next generation flexible electronic devices.

정렬된 미세 패턴을 형성하는 기술은 차세대 전자소자를 제작함에 있어서 기틀이 되는 기반기술이기 때문에, 최근 더욱 미세한 패턴을 구현하기 위하여 많은 노력들이 이루어지고 있다. 그 중, 본 연구에서는 패터닝 공정에 있어서 비용이 저렴하고 단시간 내에 고해상도 미세패턴의 형성이 가능한 장점을 갖는 나노 패턴전사 프린팅 공정을 이용하였다. 투명하고 유연한 기판 위에 250 nm, 500 nm, 그리고 $1{\mu}m$의 선폭을 갖는 Pt 금속 라인 패턴을 성공적으로 형성하였으며, 벤딩기기를 사용하여 500회 벤딩평가 후 패턴의 파괴가 일어나는지에 대한 내구성을 평가하였고, 전자현미경을 통하여 분석하였다. 벤딩 전과 후의 패턴에 대한 손상 여부에 대하여 확인한 결과, 다양한 선폭의 금속 라인 패턴이 초기 상태와 변함없이 형상을 유지할 뿐만 아니라, 패턴주기 또한 안정적으로 유지됨을 확인할 수 있었다. 이러한 결과를 볼 때, 나노 패턴 전사 프린팅 공정은 다양한 금속 패턴을 형성하는데 매우 유용하다고 판단되며, 향후 차세대 유연 전자소자 또는 배선 및 인터커넥션 기술로 응용이 가능할 것으로 기대된다.

Keywords

References

  1. J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junctions", Nat. nanotechnol., 5, 225 (2010). https://doi.org/10.1038/nnano.2010.15
  2. W. I. Park, J. M. Yoon, M. Park, J. Lee, S. K. Kim, J. W. Jeong, K. Kim, H. Y. Jeong, S. Jeon, K. S. No, J. Y. Lee, and Y. S. Jung, "Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes", Nano Lett., 12, 1235 (2012). https://doi.org/10.1021/nl203597d
  3. Y. Hu, L. Lin, Y. Zhang, and Z. L. Wang, "Replacing a battery by a nanogenerator with 20 V output", Adv. Mater., 24, 110 (2012).
  4. X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, "High-performance thin-film transistors using semiconductor nanowires and nanoribbons", Nature, 425, 274 (2003). https://doi.org/10.1038/nature01996
  5. S. Harrell, T. Seidel, and B. Fay, "The National Technology Roadmap for Semiconductors and SEMATECH future directions", Microelectron Eng., 30, 11 (1996).
  6. W. Li, and M. C. Marconi, "Extreme ultraviolet Talbot interference lithography", Opt Express, 23, 25532 (2015).
  7. S. K. Kim, "Extreme Ultraviolet Multilayer Defect Compensation in Computational Lithography", J. Nanosci. Nanotechnol., 16, 5415 (2016).
  8. W. I. Park, K. Kim, H. I. Jang, J. W. Jeong, J. M. Kim, J. Choi, J. H. Park, and Y. S. Jung, "Directed self-assembly with sub-100 degrees Celsius processing temperature, sub-10 nanometer resolution, and sub-1 minute assembly time", Small, 8, 3762 (2012).
  9. S. J. Jeong, J. Y. Kim, B. H. Kim, H. S. Moon, and S. O. Kim, "Directed self-assembly of block copolymers for next generation nanolithography", Mater. Today, 16, 468 (2013).
  10. J. M. Kim, Y. J. Kim, W. I. Park, Y. H. Hur, J. W. Jeong, D. M. Sim, K. M. Baek, J. H. Lee, M. J. Kim, and Y. S. Jung, "Eliminating the Trade-Off between the Throughput and Pattern Quality of Sub-15 nm Directed Self-Assembly via Warm Solvent Annealing", Adv. Funct. Mater., 25, 306 (2015).
  11. Q. Xia, J. J. Yang, W. Wu, X. Li, and R. S. Williams, "Selfaligned memristor cross-point arrays fabricated with one nanoimprint lithography step", Nano Lett., 10, 2909 (2010).
  12. X. Liang, T. Chen, Y. S. Jung, Y. Miyamoto, G. Han, S. Cabrini, B. Ma, and D. L. Olynick, "Nanoimprint-induced molecular stacking and pattern stabilization in a solution-processed subphthalocyanine film", ACS Nano, 4, 2627 (2010).
  13. X. Yang, S. Xiao, W. Hu, J. Hwu, R. van de Veerdonk, K. Wago, K. Lee, and D. Kuo, "Integration of nanoimprint lithography with block copolymer directed self-assembly for fabrication of a sub-20 nm template for bit-patterned media", Nanotechnol., 25, 395301 (2014). https://doi.org/10.1088/0957-4484/25/39/395301
  14. J. W. Jeong, S. R. Yang, Y. H. Hur, S. W. Kim, K. M. Baek, S. Yim, H. I. Jang, J. H. Park, S. Y. Lee, C. O. Park, and Y. S. Jung, "High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching", Nat. comm., 5, 5387 (2014).
  15. J. W. Jeong, W. I. Park, L. M. Do, J. H. Park, T. H. Kim, G. Chae, and Y. S. Jung, "Nanotransfer printing with sub-10 nm resolution realized using directed self-assembly", Adv. Mater., 24, 3526 (2012).
  16. M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, "Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors", Nat. Mater., 6, 379 (2007).
  17. J. H. Ahn, H. Lee, and S. H. Choa, "Technology of flexible semiconductor/memory device", J. Microelectron. Packag. Soc., 20(2), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.2.001
  18. J. G. Seol, D. J. Lee, T. W. Kim, and B. J. Kim, "Reliability study on rolling deformation of ITO thin film on flexible substrate", J. Microelectron. Packag. Soc., 25(1), 29 (2018). https://doi.org/10.6117/KMEPS.2018.25.1.029

Cited by

  1. 패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법 vol.27, pp.4, 2018, https://doi.org/10.6117/kmeps.2020.27.4.083