DOI QR코드

DOI QR Code

Normalized Cross-Correlations of Solar Cycle and Physical Characteristics of Cloud

  • Chang, Heon-Young (Department Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Received : 2019.09.23
  • Accepted : 2019.11.26
  • Published : 2019.12.15

Abstract

We explore the associations between the total sunspot area, solar north-south asymmetry, and Southern Oscillation Index and the physical characteristics of clouds by calculating normalized cross-correlations, motivated by the idea that the galactic cosmic ray influx modulated by solar activity may cause changes in cloud coverage, and in turn the Earth's climate. Unlike previous studies based on the relative difference, we have employed cloud data as a whole time-series without detrending. We found that the coverage of high-level and low-level cloud is at a maximum when the solar north-south asymmetry is close to the minimum, and one or two years after the solar north-south asymmetry is at a maximum, respectively. The global surface air temperature is at a maximum five years after the solar north-south asymmetry is at a maximum, and the optical depth is at a minimum when the solar north-south asymmetry is at a maximum. We also found that during the descending period of solar activity, the coverage of low-level cloud is at a maximum, and global surface air temperature and cloud optical depth are at a minimum, and that the total column water vapor is at a maximum one or two years after the solar maximum.

Keywords

References

  1. Bazilevskaya GA, Usoskin IG, Fluckiger EO, Harrison RG, Desorgher L, et al., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev. 137, 149-173 (2008). https://doi.org/10.1007/s11214-008-9339-y
  2. Burns AG, Solomon SC, Wang W, Killeen TL, The ionospheric and thermospheric response to CMEs: challenges and successes, J. Atmos. Sol.-Terr. Phys. 69, 77-85 (2007). https://doi.org/10.1016/j.jastp.2006.06.010
  3. Burns AG, Zeng Z, Wang W, Lei J, Solomon SC, et al., Behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data, J. Geophys. Res. 113, A12305 (2008). https://doi.org/10.1029/2008JA013308
  4. Carslaw KS, Harrison RG, Kirkby J, Cosmic rays, clouds, and climate, Science 298, 1732-1737 (2002). https://doi.org/10.1126/science.1076964
  5. Cho IH, Chang HY, Long term variability of the sun and climate change, J. Astron. Space Sci. 25, 395-404 (2008). https://doi.org/10.5140/JASS.2008.25.4.395
  6. Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, et al., The global temperature anomaly and solar North-South asymmetry, Asia-Pac. J. Atmos. Sci. 48, 253-257 (2012). https://doi.org/10.1007/s13143-012-0025-3
  7. Cho IH, Kwak YS, Chang HY, Cho KS, Park YD, et al., Dependence of GCRs influx on the solar North-South asymmetry, J. Atmos. Sol.-Terr. Phys. 73, 1723-1726 (2011). https://doi.org/10.1016/j.jastp.2011.03.007
  8. Cohen TJ, Sweetser EI, The spectra of the solar cycle and of data for Atlantic tropical cyclones, Nature 256, 295-296 (1975). https://doi.org/10.1038/256295a0
  9. Dickinson RE, Solar variability and the lower atmosphere, Bull. Am. Meteorol. Soc. 56, 1240-1248 (1975). https://doi.org/10.1175/1520-0477(1975)056<1240:SVATLA>2.0.CO;2
  10. Dunne EM, Gorden H, Kurten A, Almeida J, Duplissy J, et al., Global atmospheric particle formation from CERN CLOUD measurements, Science 354, 1119-1124 (2016). https://doi.org/10.1126/science.aaf2649
  11. Dunne EM, Lee LA, Reddington CL, Carslaw KS, No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols, Atmos. Chem. Phys. 12, 11573-11587 (2012). https://doi.org/10.5194/acp-12-11573-2012
  12. Eddy JA, The maunder minimum, Science 192, 1189-1202 (1976). https://doi.org/10.1126/science.192.4245.1189
  13. Elsner JB, Jagger TH, United States and Caribbean tropical cyclone activity related to the solar cycle, Geo. Res. Lett. 35, L18705 (2008). https://doi.org/10.1029/2008GL034431
  14. Emmert JT, Picone JM, Climatology of globally averaged thermospheric mass density, J. Geophys. Res. 115, A09326 (2010). https://doi.org/10.1029/2010JA015298
  15. Forbush SE, World-wide cosmic ray variations, 1937-1952, J. Geophys. Res. 59, 525-542 (1954). https://doi.org/10.1029/JZ059i004p00525
  16. Gordon H, Kirkby J, Baltensperger U, Bianchi F, Breitenlechner M, et al., Causes and importance of new particle formation in the present-day and preindustrial atmospheres, J. Geophys. Res. Atmos. 122, 8739-8760 (2017). https://doi.org/10.1002/2017JD026844
  17. Gray LJ, Ball W, Misios S, Solar influences on climate over the Atlantic/European sector, AIP Conf. Proc. 1810, 020002 (2017). https://doi.org/10.1063/1.4975498
  18. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al., Solar influences on climate, Rev. Geophys. 48, RG4001 (2010). https://doi.org/10.1029/2009RG000282
  19. Haigh JD, The impact of solar variability on climate, Science 272, 981-984 (1996). https://doi.org/10.1126/science.272.5264.981
  20. Haigh JD, The sun and the earth's climate, Living Rev. Sol. Phys. 4, 2 (2007). https://doi.org/10.12942/lrsp-2007-2
  21. Harrison RG, Stephenson DB, Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds, Proc. R. Soc. A, 462, 1221-1223 (2006). https://doi.org/10.1098/rspa.2005.1628
  22. Hodges RE, Elsner JB, Evidence linking solar variability with US hurricanes, Int. J. Climatol. 31, 1897-1907 (2011). https://doi.org/10.1002/joc.2196
  23. Kane RP, Short-term periodicities in solar indices, Sol. Phys. 227, 155-175 (2005). https://doi.org/10.1007/s11207-005-1110-x
  24. Kavlakov SP, Global cosmic ray intensity changes, solar activity variations and geomagnetic disturbances as North Atlantic hurricane precursors, Int. J. Mod. Phys. A 20, 6699-6701 (2005). https://doi.org/10.1142/S0217751X0502985X
  25. Kazil J, Zhang K, Stier P, Feichter J, Lohmann U, O'Brien K, The present-day decadal solar cycle modulation of Earth's radiative forcing via charged $H_2SO_4/H_2O$ aerosol nucleation, Geophys. Res. Lett. 39, L02805 (2012). https://doi.org/10.1029/2011GL050058
  26. Kim JH, Chang HY, Association between solar variability and teleconnection index, J. Astron. Space Sci. 36, 149-157 (2019). https://doi.org/10.5140/JASS.2019.36.3.149
  27. Kim JH, Kim KB, Chang HY, Solar influence on tropical cyclone in western North Pacific Ocean, J. Astron. Space Sci. 34, 257-270 (2017). https://doi.org/10.5140/JASS. 2017.34.4.257
  28. Kim KB, Kim JH, Chang HY, Do solar cycles share spectral properties with tropical cyclones that occur in the western North Pacific Ocean?, J. Astron. Space Sci. 35, 151-161 (2018). https://doi.org/10.5140/JASS.2018.35.3.151
  29. Kirkby J, Beam measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, European Organization for Nuclear Research (CERN), CERNOPEN-2001-028 (2001).
  30. Kolomeets EV, Mukanov JB, Shvartsman YE, 1973. Long-term variations in cosmic rays and solar activity, Proceedings of the 13th International Conference on Cosmic Rays, Denver, CO, 17-30 Aug 1973.
  31. Kopp G, Fehlmann A, Finsterle W, Harber D, Heuerman K, et al., Total solar irradiance data record accuracy and consistency improvements, Metrologia, 49, S29-S33 (2012). https://doi.org/10.1088/0026-1394/49/2/S29
  32. Lee S, Yi Y, Pacific equatorial sea surface temperature variation during the 2015 El Nino period observed by advanced veryhigh-resolution radiometer of NOAA satellites, J. Astron. Space Sci. 35, 105-109 (2018). https://doi.org/10.5140/JASS.2018.35.2.105
  33. Marsh N, Svensmark H, Cosmic rays, clouds, and climate, Space Sci. Rev. 94, 215-230 (2000). https://doi.org/10.1023/A:1026723423896
  34. Maunder EW, Note on the distribution of sun-spots in heliographic latitude, 1874 to 1902, Mon. Not. R. Astron. Soc. 64, 747-761 (1904). https://doi.org/10.1093/mnras/64.8.747
  35. Muraki Y, Application of coupled harmonic oscillator model to solar activity and El Nino phenomena, J. Astron. Space Sci. 35, 75-81 (2018). https://doi.org/10.5140/JASS.2018.35.2.75
  36. Ney EP, Cosmic radiation and the weather, Nature 183, 451-452 (1959). https://doi.org/10.1038/183451a0
  37. Oey LY, Chou S, Evidence of rising and poleward shift of storm surge in western North Pacific in recent decades, J. Geophys. Res. Oceans, 121, 5181-5192 (2016). https://doi.org/10.1002/2016JC011777
  38. Palle Bago E, Butler CJ, The influence of cosmic rays on terrestrial clouds and global warming, Astron. Geophys. 41, 4.18-4.22 (2000). https://doi.org/10.1046/j.1468-4004.2000.00418.x
  39. Perez-Peraza J, Kavlakov S, Velasco V, Gallegos-Cruz A, Azpra-Romero E, et al., Solar, geomagnetic and cosmic ray intensity changes, preceding the cyclone appearances around Mexico, Adv. Space Res. 42, 1601-1613 (2008). https://doi.org/10.1016/j.asr.2007.12.004
  40. Pierce JR, Adams PJ, Efficiency of cloud condensation nuclei formation from ultrafine particles, Atmos. Chem. Phys. 7, 1367-1379 (2007). https://doi.org/10.5194/acp-7-1367-2007
  41. Pierce JR, Adams PJ, Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?, Geophys. Res. Lett. 36, L09820 (2009). https://doi.org/10.1029/2009GL037946
  42. Pudovkin MI, Influence of solar activity on the lower atmosphere state, Int. J. Geomagn. Aeron. 5, GI2007 (2004). https://doi.org/10.1029/2003GI000060
  43. Pudovkin MI, Veretenenko SV, Pellinen R, Kyro E, Meteorological characteristic changes in the high-latitudinal atmosphere associated with Forbush decreases of the galactic cosmic rays, Adv. Space Res. 20, 1169-1172 (1997). https://doi.org/10.1016/S0273-1177(97)00767-9
  44. Rawal A, Tripathi SN, Michael M, Srivastava AK, Harrison RG, Quantifying the importance of galactic cosmic rays in cloud microphysical processes. J. Atmos. Sol.-Terr. Phys. 102, 243-251 (2013). https://doi.org/10.1016/j.jastp.2013.05.017
  45. Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys. 66, 1143-1149 (2004). https://doi.org/10.1016/j.jastp.2004.05.006
  46. Scafetta N, West BJ, Phenomenological solar contribution to the 1900-2000 global surface warming, Geophys. Res. Lett. 33, L05708 (2006). https://doi.org/10.1029/2005GL025539
  47. Schiffer RA, Rossow WB, The International Satellite Cloud Climatology Project (ISCCP): the first project of the World Climate Research Programme, Bull. Am. Meteorol. Soc., 64, 779-784 (1983). https://doi.org/10.1175/1520-0477-64.7.779
  48. Singh D, Singh RP, The role of cosmic rays in the Earth's atmospheric processes, Pramana. J. Phys. 74, 153-168 (2010). https://doi.org/10.1007/s12043-010-0017-8
  49. Snow-Kropla EJ, Pierce JR, Westervelt DM, Trivitayanurak W, Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties, Atmos. Chem. Phys. 11, 4001-4013 (2011). https://doi.org/10.5194/acp-11-4001-2011
  50. Solanki SK, Krivova NA, Haigh JD, Solar irradiance variability and climate, Ann. Rev. Astron. Astrophys. 51, 311-351 (2013). https://doi.org/10.1146/annurev-astro-082812-141007
  51. Solanki SK, Schüssler M, Fligge M, Secular variation of the Sun's magnetic flux, Astron. Astrophys. 383, 706-712 (2002). https://doi.org/10.1051/0004-6361:20011790
  52. Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al., 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group i to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, UK).
  53. Sporer FWG, Vierteljahrsschr. Astron. Ges. Leipzig 22, 323 (1887).
  54. Svensmark H, Cosmoclimatology: A new theory emerges, Astron. Geophys. 48, 1.18-1.24 (2007). https://doi.org/10.1111/j.1468-4004.2007.48118.x
  55. Svensmark H, Bondo T, Svensmark J, Cosmic ray decreases affect atmospheric aerosols and clouds, Geophys. Res. Lett. 36, L15101 (2009). https://doi.org/10.1029/2009GL038429
  56. Svensmark H, Enghoff MB, Shaviv NJ, Svensmark J, Increased ionization supports growth of aerosols into cloud condensation nuclei, Nat. Comm. 8, 2199 (2017). https://doi.org/10.1038/s41467.017.02082.2
  57. Svensmark H, Friis-Christensen E, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys. 59, 1225-1232 (1997). https://doi.org/10.1016/S1364-6826(97)00001-1
  58. Tinsley BA, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev. 94, 231-258 (2000). https://doi.org/10.1023/A:1026775408875
  59. Tinsley BA, Deen GW, Apparent tropospheric response to MeVGeV particle flux variations: a connection via electrofreezing of supercooled water in high-level clouds?, J. Geophys. Res. 96, 22283-22296 (1991). https://doi.org/10.1029/91JD02473
  60. Todd MC, Kniveton DR, Short-term variability in satellitederived cloud cover and galactic cosmic rays: an update, J. Atmos. Sol.-Terr. Phys. 66, 1205-1211 (2004). https://doi.org/10.1016/j.jastp.2004.05.002
  61. Usoskin IG, A history of solar activity over millennia, Living Rev. Sol. Phys. 10, 1 (2013). https://doi.org/10.12942/lrsp-2013-1
  62. Wang H, Su W, The ENSO effects on tropical clouds and topof-atmosphere cloud radiative effects in CMIP5 models, J. Geophys. Res. Atmos. 120, 4443-4465 (2015). https://doi.org/10.1002/2014JD022337
  63. Yu F, Luo G, Effect of solar variations on particle formation and cloud condensation nuclei, Environ. Res. Lett. 9, 045004 (2014). https://doi.org/10.1088/1748-9326/9/4/045004.
  64. Yu F, Luo G, Liu X, Easter RC, Ma X, et al., Indirect radiative forcing by ion-mediated nucleation of aerosol, Atmos. Chem. Phys. 12, 11451-11463 (2012). https://doi.org/10.5194/acp-12-11451-2012