DOI QR코드

DOI QR Code

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos

HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석

  • KIM, EUN YOUNG (Department of Convergence Studies on Ocean Science and Technology, School of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • AN, SUNG MIN (Marine Ecosystem and Biological Research Center, KIOST) ;
  • CHOI, DONG HAN (Department of Convergence Studies on Ocean Science and Technology, School of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • LEE, HOWON (Marine Ecosystem and Biological Research Center, KIOST) ;
  • NOH, JAE HOON (Department of Convergence Studies on Ocean Science and Technology, School of Ocean Science and Technology, Korea Maritime and Ocean University)
  • 김은영 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 안성민 (한국해양과학기술원 해양생태연구센터) ;
  • 최동한 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 이호원 (한국해양과학기술원 해양생태연구센터) ;
  • 노재훈 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과)
  • Received : 2018.11.05
  • Accepted : 2018.12.06
  • Published : 2019.02.28

Abstract

In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.

본 연구에서는 태안반도 근소만 갯벌에서 저서미세조류(MPB)의 현존량, 군집조성 및 광생리의 월변화에 대해 알아보기 위하여 2016년 10월부터 2017년 10월까지 월 1~2회씩 총 16회에 걸쳐 갯벌 표층에 분포하는 저서미세조류 색소를 HPLC (High performance liquid chromatography)를 이용 분석하였다. 갯벌 표층 1 cm 깊이에 분포하는 저서미세조류의 광합성 색소 중 현존량의 지표로 사용되는 총 chlorophyll a (TChl a) 농도는 연중 40.4~218.9 mg m-2의 범위를 보였다. 2월 24일에 최대값이 나타났고 3월에도 높은 값을 보인 뒤 이후 감소하였다. 저서미세조류의 현존량은 동계에 높고 하계에 낮은 값을 나타냈다. Phaeophorbide a 농도의 월별 변동을 통해 동계에 상위 포식자의 낮은 포식압이 저서미세조류 동계번성에 일부 기여한 것으로 사료된다. 또한 주요지시색소를 이용한 저서미세조류 군집조성의 분석결과 저서규조류의 지시색소인 fucoxanthin의 농도가 연중 가장 높게 나타났다. Chlorophyll b(녹조류), peridinin(와편모조류)을 제외한 대부분의 지시색소의 농도는 동계에 증가하였으나, fucoxanthin의 농도 증가율이 가장 높아 fucoxanthin을 제외한 TChl a에 대한 주요지시색소의 상대비는 동계에 감소하는 경향이 있었다. 형광광도계와 산소미세전극을 이용하여 측정한 퇴적물 내 Chl a와 산소 농도의 연직분포 특성은 퇴적층 표면에서 깊이가 깊어질수록 Chl a 값과 산소 농도가 함께 감소하는 경향을 보였고, 동계로 갈수록 이런 경향이 더욱 뚜렷하게 나타났다. 하지만 5~7월의 Chl a 농도는 다른 기간에 비해 12 mm까지 연직으로 유사하게 나타났으나, 5월의 산소 농도 분포는 1 mm 이하에서 급격하게 감소하였다. 같은 시기에 phaeophorbide a 농도가 증가하는 것으로 보아 저서동물의 포식활동에 의한 산소 소비량이 증가하였을 가능성이 있으며, 저서동물의 생물교란에 의해 저서미세조류의 세포가 아래로 옮겨진 것으로 추측된다. 한편, 저서미세조류의 광적응의 지표로 사용되는 diadinoxanthin (DD)과 diatoxanthin (DT)로 얻은 상대적인 비(DT/(DD+DT))는 10월에서 3월로 갈수록 감소하며, 5월에는 증가하는 것으로 볼 때, 월별로 Xanthophyll cycle의 활성 정도에 차이가 있었음을 알 수 있었다.

Keywords

GHOHBG_2019_v24n1_1_f0001.png 이미지

Fig. 1. Location of tidal flat at the Geunso Bay and sampling site (red point).

GHOHBG_2019_v24n1_1_f0002.png 이미지

Fig. 2. Monthly variation of the total chlorophyll a and phaeophorbide a concentrations from Oct. 2016 to Oct. 2017 in Geunso Bay tidal flat.

GHOHBG_2019_v24n1_1_f0003.png 이미지

Fig. 3. Monthly variation of marker pigments concentrations from Oct. 2016 to Oct. 2017 in Geunso Bay tidal flat.

GHOHBG_2019_v24n1_1_f0004.png 이미지

Fig. 4. Monthly variation of ratios of marker pigments to total chlorophyll a from Oct. 2016 to Oct. 2017 in Geunso Bay tidal flat.

GHOHBG_2019_v24n1_1_f0005.png 이미지

Fig. 5. Monthly variation of vertical chlorophyll a contents profile from Oct. 2016 to Oct. 2017 in Geunso Bay tidal flat.

GHOHBG_2019_v24n1_1_f0006.png 이미지

Fig. 6. Oxygen profiles obtained from Geunso Bay tidal flat.

GHOHBG_2019_v24n1_1_f0007.png 이미지

Fig. 7. Monthly variation of DT/(DD+DT) relative ratios from Oct. 2016 to Oct. 2017 in Geunso Bay tidal flat. Abbreviations: DD=diadinoxanthin; DT=diatoxanthin.

Table 1. HPLC column and solvent system (Zapata et al., 2000)

GHOHBG_2019_v24n1_1_t0001.png 이미지

Table 2. List of sediment chlorophyll contents (modified from MacIntyre et al.(1996)). The number displayed in the duration column indicates the number of months measured, and the survey was conducted once a month. The contents in brackets in the chlorophyll a content column mean the average value of chlorophyll a content

GHOHBG_2019_v24n1_1_t0002.png 이미지

Table. 3. The Average concentration of phytosynthetic pigments analyzed by HPLC and The ratio of accessory pigments to total chlorophyll a in Geunso Bay tidal flat

GHOHBG_2019_v24n1_1_t0003.png 이미지

References

  1. An, S.M., D.H. Choi, H. Lee and J.H. Noh, 2017. Identification of benthic diatoms isolated from the eastern tidal flats of the Yellow Sea: Comparison between morphological and molecular approaches. Plos one, 12(6): e0179422. https://doi.org/10.1371/journal.pone.0179422
  2. An, S.M., D.H. Choi, H. Lee, J.H. Lee and J.H. Noh, 2018. Next-generation sequencing reveals the diversity of benthic diatoms in tidal flats. Algae, 33(2): 167-180. https://doi.org/10.4490/algae.2018.33.4.3
  3. Admiraal, W., 1984. The ecology of estuarine sediment inhabiting diatoms. Prog. phycol. Res., 3: 269-322.
  4. Barranguet, C., P.M.J. Herman and J.J. Sinke, 1997. Microphytobenthos biomass and community composition studied by pigment biomarkers: importance and fate in the carbon cycle of a tidal flat. J. Sea. Rea., 38: 59-70. https://doi.org/10.1016/S1385-1101(97)00032-4
  5. Bebout, B.M. and F. Garcia-Pichel, 1995. UV B-induced Vertical Migrations of Cyanobacteria in a Microbial Mat. Environ. Microbiol., 61: 4215-4222. https://doi.org/10.1128/AEM.61.12.4215-4222.1995
  6. Bidigare, R.P., T.J. Frank, C. Zastrow and J.M. Brooks, 1986. The distribution of algal chlorophylls and their degradation products in the Southern Ocean. Deep-Sea Res., 33: 923-937.
  7. Brown, B.E., R.P. Dunne, M.E. Warner, I. Ambarsari, W.K. Fitt, W. Gibb and D.G. Cummings, 2000. Damage and recovery of Photosystem II during a manipulative field experiment on solar bleaching in the coral Goniastrea aspera. Mar. Ecol. Prog. Ser., 195: 117-124. https://doi.org/10.3354/meps195117
  8. Buffan-Dubau, E. and K.R. Carman, 2000. Extraction of benthic microalgal pigments for HPLC analyses. Mar. Ecol. Prog. Ser., 204: 293-297. https://doi.org/10.3354/meps204293
  9. Burkill, P.H., R.F.C Mantoura, C.A. Llewellyn and N.J.P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol., 93: 581-590. https://doi.org/10.1007/BF00392796
  10. Cadee, G.C. and J. Hegeman, 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res., 8: 260-291. https://doi.org/10.1016/0077-7579(74)90020-9
  11. Chan, A.T., 1978. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. I. Growth under continuous light. J Phycol., 14: 396-402. https://doi.org/10.1111/j.1529-8817.1978.tb02458.x
  12. Choi, Y.H., Y.S. Choi, Y.S. Cho, Y.T. Kim and S.R. Jeon, 2016. A study on the habitat suitability considering survival, Growth, Environment for Ruditapes philippinarum in Geunso Bay (Pado and Beopsan). J. Korean. Soc. Mar. Environ. Saf., 22: 723-730. https://doi.org/10.7837/kosomes.2016.22.6.723
  13. Colijn, F. and V.N. de Jonge, 1984. Primary production of microphytobenthos in the Ems-Dollard Estuary. Mar. Ecol. Prog. Ser., 14: 185-196. https://doi.org/10.3354/meps014185
  14. Consalvey, M, D.M. Paterson and G.J.C Underwood, 2004. The ups and downs of life in a benthic biofilm: Migration of benthic diatoms. Diatom Res., 19: 181-202. https://doi.org/10.1080/0269249X.2004.9705870
  15. de Jonge, V.N. and F. Colijn, 1994. Dynamics of microphytobenthos biomass in the Ems estuary. Mar. Ecol. Prog. Ser., 104: 185-196. https://doi.org/10.3354/meps104185
  16. Davis, M.W. and C.D. Mcintire, 1983. Effects of physical gradients on the production dynamics of sediment-associated algae. Mar. Ecol. Prog. Ser., 13: 103-114. https://doi.org/10.3354/meps013103
  17. Demers, S., S. Roy, R. Gagnon and C. Vignault, 1991. Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism. Mar. Ecol. Prog. Ser., 76: 185-193. https://doi.org/10.3354/meps076185
  18. Denis, L., F. Gevaert and N. Spilmont, 2012. Microphytobenthic production estimated by in situ oxygen microprofiling: short-term dynamics and carbon budget implications. J. Soils sediments, 12: 1517-1529. https://doi.org/10.1007/s11368-012-0588-8
  19. Du, G.Y., M. Son, S. An and I.K. Chung, 2010. Temporal variation in the vertical distribution of microphytobenthos in intertidal flats of the Nakdong River esturary, Korea. Estuar. Coast. Shelf Sci., 86: 62-70. https://doi.org/10.1016/j.ecss.2009.10.008
  20. Elisabeth, A. and J.M. Bernhard, 1995. Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Mar. Ecol. Prog. Ser., 116: 137-151. https://doi.org/10.3354/meps116137
  21. EPA, 1997. Method 445.0. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. 8-9 pp.
  22. Falkowski, P.G. and T.G. Owens, 1980. Light-shade adaptation: 2 strategies in marine phytoplankton. Plant Physiol., 66: 592-595. https://doi.org/10.1104/pp.66.4.592
  23. Forster, R.M. and J.C. Kromkamp, 2004. Modelling the effects of chlorophyll fluorescence from subsurface layers on photosynthetic efficiency measurements in microphytobenthic algae. Mar. Ecol. Prog. Ser., 264: 9-22. https://doi.org/10.3354/meps284009
  24. Frank, H.A. and R.J. Cogdell, 1996. Carotenoids in photosynthesis. Photochem. Photobiol., 63: 257-364. https://doi.org/10.1111/j.1751-1097.1996.tb03022.x
  25. Gould, D.M. and E.D. Gallagher, 1990. Field measurements of specific growth rate, biomass, and primary production of benthic diatoms of Savin Hill Cove, Boston. Limnol. Oceanogr., 35: 1757-1770. https://doi.org/10.4319/lo.1990.35.8.1757
  26. Goto, N., O. Mitamura and H. Terai, 2000. Seasonal variation in primary production of microphytobenthos at the Isshiki intertidal flat in Mikawa Bay. Limnol. (Japanese), 1: 133-138. https://doi.org/10.1007/s102010070019
  27. Halldal, P., 1970. The photosynthetic apparatus of microalgae and its adaptation to environmental factors. In: Photobiology of microorganisms, edited by Halldal, P., Wiley, New York, 17-56 pp.
  28. Hay, S.I., T.C. Maitland and D.M. Paterson, 1993. The speed of diatom migration through natural and artificial substrata. Diatom Res., 8: 371-384. https://doi.org/10.1080/0269249X.1993.9705268
  29. Heip, C.H.R., N.K. Goosen, P.M.J. Herman, J. Kromkamp, J.J. Middelburg and K. Soetaert, 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanogr. Mar. Biol. Ann. Rev., 33: 1-149.
  30. Hejdukova, E., 2016. Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Ph.D. Thesis, Charles University, Czech, 13-14, 43-44 pp.
  31. Hwang, C.Y. and B.C. Cho, 2005. Measurement of net photosynthetic Rates in intertidal flats of Ganghwa-gun and Incheon north harbor using oxygen microsensors. J. Korean Soc. Ocean., 10: 31-37.
  32. Jesus, B., V. Brotas, M. Marani and D.M. Paterson, 2005. Spatial dynamics of microphytobenthos determined by PAM fluorescence. Estuar. Coast. Shelf Sci., 68: 547-556. https://doi.org/10.1016/j.ecss.2006.03.005
  33. Jonsson, B., K. Sundback and C. Milsson, 1994. An upright life-form of an epipelic motile diatom: on the behavior of Gyrosigma balticum. Eur. J. Phycol., 29: 11-15. https://doi.org/10.1080/09670269400650421
  34. Kim, D.S. and K.H. Kim, 2008. Tidal and seasonal variations of nutrients in Keunso bay, the yellow sea. Ocean Polar Res., 30(1): 1-10. https://doi.org/10.4217/OPR.2008.30.1.001
  35. Kim, J.H. and K.J. Cho, 1985. The Physico-chemical properties of sediment, the species composition and biomass of benthic diatoms in the intertidal zone of Kum river estuary. J. Ecol. Environ., 8: 21-29.
  36. Kim, J.N., Y.J. Choi, K.H. Im, K.H. Choi and C.W. Ma, 2005. Species composition and seasonal variation of decapod crustacean assemblage in Hampyeong Bay. Korea. J. Kor. Fish Soc., 38(1): 20-28.
  37. Kingston, M.B. and J.S. Gough, 2009. Vertical migration of a mixed-species Euglena (Euglenophyta) assemblage inhabiting the high-intertidal sands of Nye beach, Oregon. J. Phycol., 45: 1021-1029. https://doi.org/10.1111/j.1529-8817.2009.00748.x
  38. KIOST, 2010. Studies on sediments waters and biota to understand major environmental factors in rehabilitation of degraded tidal flats. Korean Institute of Ocean Science and Technology. BSPE98462-2253-5. 436 p.
  39. Krembs, C., H. Eicken and J.W. Deming, 2011. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. PNAS, 108: 3653-3658. https://doi.org/10.1073/pnas.1100701108
  40. Kromkamp, J.C., C. Barranguet and J. Peene, 1998. Determination of microphytobenthos PSII quantum efficiency and phytosynthetic activity by means of variable chlorophyll fluorescence. Mar. Ecol. Prog. Ser., 162: 45-55. https://doi.org/10.3354/meps162045
  41. Kuhl, M., R.N. Glud, H. Ploug, N.B. Ramsing, 1996. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol., 32: 799-812. https://doi.org/10.1111/j.0022-3646.1996.00799.x
  42. Larras, F., B. Montuelle, F. Rimet, N. Chevre, and A.Bouchez, 2014. Seasonal shift in the sensitivity of a natural benthic microalgal community to a herbicide mixture: impact on the protective level of thresholds derived from species sensitivity distributions. Ecotoxicology, 23(6): 1109-1123. https://doi.org/10.1007/s10646-014-1254-2
  43. Lee, H.Y., 2013. Diversity and biomass of benthic diatoms in Hampyeong bay tidal flats. Korean J. Environ. Biol., 31(4): 295-301. https://doi.org/10.11626/KJEB.2013.31.4.295
  44. Lee, I.G., S.M. Boo and S.H. Lee, 2004. Diversity and system of Microalgae. Life Science Publishing Co., Lehi, 66 pp.
  45. Lee, Y.W., 2001. Studies on pigment analysis of microphytobenthos by HPLC in sediment of Gomso Bay, Korea. M.S. Thesis, Pukyong National University, Busan, 56-69 pp.
  46. Lee, Y.W., E.J. Choi, Y.S. Kim and C.K. Kang, 2009. Seasonal variations of microphytobenthos in sediments of the estuarine muddy sandflat of Gwangyang Bay: HPLC Pigment Analysis. J. Korean Soc. Oceanogr., 14: 48-55.
  47. Lukatelich, R.J. and A.J. McComb, 1986. Distribution and abundance of benthic microalgae in a shallow southwestern Australian esturarine system. Mar. Ecol. Prog. Ser., 27: 287-297. https://doi.org/10.3354/meps027287
  48. MacIntyre, H.L., R.J. Geider and D.C. Miller, 1996. Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. 1. Distribution, abundance and primary production. Estuar. Coast., 19: 186-201. https://doi.org/10.2307/1352224
  49. Meyer, A.A., M. Tackx and N. Daro, 2000. Xanthophyll cycling in Phaeocystis globosa and Thalassiosira sp.: a possible mechanism for species succession. J. Sea Res., 43: 273-384.
  50. Min, W.G., D.S. Kim and J.H. Le, 2006. Community structure and spatial variation of meiobenthos associated with and artificial structure. J. Kor. Fish Soc., 39: 223-230.
  51. NASA, 2012. The Fifth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-5). NASA ocean color paper NASA/TM-2012-217503, 12 p.
  52. Nielsen, L.P., P.B. Christensen and N.P. Revsbech, 1990. Denitrification and photosynthesis in stream sediment studied with microsensors and whole-core techniques. Limnol. Oceanogr., 35: 1135-1144. https://doi.org/10.4319/lo.1990.35.5.1135
  53. Nowicki, B.I. and S.W. Nixon, 1985. Benthic community metabolism in a coastal lagoon ecosystem. Mar. Ecol. Prog. Ser., 22: 21-30. https://doi.org/10.3354/meps022021
  54. Oh, S.H., 1990. Environmental characteristics and diatom communities on the Mangyung-Dongjin Tidal flat, West coast of Korea. M.D. Thesis, Seoul National University, Seoul, 99 p.
  55. Oh, S.J., C.H. Moon and M.O. Park, 2004. HPLC analysis of biomass and community composition of microphytobenthos in the Saemankeum tidal flat, west coast of Korea. J. Kor. Fish Soc., 37: 215-225.
  56. Olaizola, M. and H.Y. Yamamoto, 1994. Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros-muelleri (Bacillariophyceae). J. phycol., 20: 606-612. https://doi.org/10.1111/j.0022-3646.1994.00606.x
  57. Perkins, R.G., K. Oxborough, A.R.M. Hanlon, G.J.C. Underwood and N.R. Baker, 2002. Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilm? Mar. Ecol. Prog. Ser., 228: 47-56. https://doi.org/10.3354/meps228047
  58. Perry, M.J., M.C. Talbot and S.A. Alberts, 1981. Photoadaptation in marine phytoplankton: response of the photosynthetic unit. Mar Biol., 62: 91-101. https://doi.org/10.1007/BF00388170
  59. Plante-Cuny, M.R. and A. Bodoy, 1987. Biomasse et production primarie du phytoplankton et du microphytobenthos de deux biotopes sableux (Golfe de Fos, France). Oceanology Acta.,10: 223-237.
  60. Prezelin, B.B. and B.M. Sweeney, 1978. Photoadaptation of photosynthesis in Gonyaulax polyedra. Mar. Biol., 48: 17-35.
  61. Pesce, S., I. Batisson, C. Bardot, C. Fajon, C. Portelli, B. Montuelle and J. Bohatier, 2009. Response of spring and summer riverine microbial communities following glyphosate exposure. Ecotoxicol. Environ. Saf., 72(7): 1905-1912. https://doi.org/10.1016/j.ecoenv.2009.07.004
  62. Raven, P.H., P.F. Evert and S.E. Eichorn, 1992. Biology of Plants. Worth Publishers, New York, 791 pp.
  63. Riper, D.M., T.G. Owens and P.G. Falkowski, 1979. Chlorophyll turnover in Skeletonema costatum, a marine plankton diatom. Plant Physiol., 64: 49-54. https://doi.org/10.1104/pp.64.1.49
  64. Roy, S., C. Llewelly, E.S. Egeland and G. Johnsen, 2011. Phytoplankton pigments (Characterization, chemotaxonomy and Applications of Oceanography). Cambridge University Press, Cambridge, 37, 46-54 pp.
  65. Serodio, J., J.M. da Silca, F. Catarino, 1997. Non-destructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chl-a fluorescence. J. phycol., 33: 545-553.
  66. Shim, J.H. and B.C. Joe, 1984. Community composition of microphytobenthos living in intertidal zone near Incheon, Symposium of College of Natural science, Seoul National University, 9: 135-150.
  67. Shin, A.Y., D.S. Kim, T.W. Kang, J.H. Oh, J.M. Lee and J.S. Hong, 2016. Seasonal fluctuation of meiobenthic fauna community at Keunso tidal flat in Taean, Korea. J. Korean soc. Ocean., 21(4): 144-157.
  68. Sukenik, A., K.D. Wyman, J. Bennnett and P.G. Falkowski, 1987. A novel mechanism for regulating the excitation of photosystem II in a green alga. Nature Lond., 327: 704-707. https://doi.org/10.1038/327704a0
  69. Sullivan, M.J. and F.C. Daiber, 1975. Light, nitrogen, and phosphorous limitation of edaphic algae in a Delaware salt marsh. J. Exp. Mar. Biol. Ecol., 18: 79-88. https://doi.org/10.1016/0022-0981(75)90018-0
  70. Sullivan, M.J. and C. Moncreiff, 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analysis, Mar. Ecol. Prog. Ser., 32: 149-159. https://doi.org/10.3354/meps032149
  71. Sun, M.Y., R.C. Aller and C. Lee, 1994. Spatial and temporal distributions of sedimentary chloropigments as indicators of benthic processes in Long Island Sound. J. Mar. Res., 52: 149-176. https://doi.org/10.1357/0022240943076768
  72. Underwood, G.J.C. and J. Kromkamp, 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Adv. Ecol. Res., 29: 93-153. https://doi.org/10.1016/S0065-2504(08)60192-0
  73. van Leeuwe, M.A., V. Brotas, M. Consalvey, R.M. Forster, D. Gillespie, B. Jesus, J. Roggeveld and W.W.C. Gieskes, 2008. Photoacclimation in microphytobenthos and the role of xanthophyll pigments. Eur. J. Phycol., 43(2): 123-132. https://doi.org/10.1080/09670260701726119
  74. Varela, M. and E. Penas, 1985. Primary production of benthic microalgae in an intertidal sand flat of the Ria de Arosa, NM spain. Mar. Ecol. Prog. Ser., 25: 111-119. https://doi.org/10.3354/meps025111
  75. Welsh, D.T., 2000. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiology Reviews, 24: 263-290. https://doi.org/10.1111/j.1574-6976.2000.tb00542.x
  76. Woods Hole, 1997. U.S. Joint Global Ocean Flux Study, Bermuda Atlantic Time-series Study. Data Report for BATS 61-BATS 72.
  77. Yallop, M.L., B. Winder, D.M. Paterson and L.J. Stal, 1994. Comparative structure, Primary production and biogenic stabilization of cohensive and non-cohensive marine sediments inhabited by microphytobenthos. Estuar. Coast. Shelf Sci.,39: 565-582. https://doi.org/10.1016/S0272-7714(06)80010-7
  78. Yoo, M.H. and J.K. Choi, 2005. Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea. J. Korean Soc. Ocean., 10: 8-18.
  79. Young, A.J. and H.A. Frank, 1996. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. J. Photochem. Photobiol. B: Biol., 36: 3-15. https://doi.org/10.1016/S1011-1344(96)07397-6
  80. Yun, M.S., C.H. Lee and I.K. Chung, 2009. Influence of Temperature on the Photosynthetic Responses of Benthic Diatoms: Fluorescence Based Estimates. J. Korean Soc. Ocean., 14(2): 118-126.
  81. Zapata, M., F. Rodriguez and L. Garrido, 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser., 195: 29-45. https://doi.org/10.3354/meps195029