DOI QR코드

DOI QR Code

The Growth Performances and Soil Properties of Planted Zelkova serrata Trees according to Fertilization in Harvested Pinus rigida Plantation over 6 Years after Planting

조림지 시비 처리에 따른 리기다소나무 벌채지 내 식재 6년 후 느티나무 조림지 토양 및 조림목 생장 특성

  • Yang, A-Ram (Forest Technology and Management Research Center, National Institute of Forest Science) ;
  • Cho, Min Seok (Forest Technology and Management Research Center, National Institute of Forest Science)
  • 양아람 (국립산림과학원 산림기술경영연구소) ;
  • 조민석 (국립산림과학원 산림기술경영연구소)
  • Received : 2019.01.29
  • Accepted : 2019.02.25
  • Published : 2019.03.31

Abstract

The objective of this study was to suggest a suitable amount of fertilizer using the changes in growth performances and soil properties for improving survival and quality of Zelkova serrata trees in a harvested Pinus rigida plantation. One-year-old containerized seedlings of Z. serrata were planted with the density of 3000 seedlings $ha^{-1}$ in end of March 2011 at Gwangneung experimental forest, Pocheon. Solid compound fertilizer (N:P:K=3:4:1) were applied yearly in three amounts (control: no fertilization, F1: $180kg\;ha^{-1}$, and F2: $360kg\;ha^{-1}$) every May from 2011 to 2013. We analyzed soil properties before (2011) and after (2012 and 2017) fertilization. And we measured the root collar diameter and height of Z. serrata trees from 2011 to 2016, and then calculated H/D ratio and stem volume. Soil properties at Z. serrata plantation did not show difference according to fertilization level in every investigation year. As time passed after planting, however, concentrations of total nitrogen and available phosphorus were increased from decreased. The growth of root collar diameter, height and stem volume of Z. serrata trees at F2 plot were significantly higher those at the other plots after only 2 years of fertilization. Because Z. serrata tree demand to more nutrient during the early growing period. The survival rate of Z. serrata trees at control plot was significantly lower than that at the other plots. This might be due to Z. serrata trees at control plot had not the upper hand from competition with vegetation at the early in planting. However, the growth of height and stem volume of Z. serrata trees between F1 and F2 plots did not show difference over 6 years after planting. Consequently, we could suggest that Z. serrata trees need to F1 fertilization level for considering improving survival and quality of Z. serrata trees and economical efficiency of plantation managements after harvesting P. rigida plantation.

본 연구는 조림 후 시비 처리에 따른 리기다소나무 벌채지 내 식재된 느티나무 조림지의 토양 특성 변화와 조림목의 초기 생육 특성을 분석하여 조림목의 생존 및 품질 향상을 위한 적정 시비량을 제시하고자 수행되었다. 연구 대상지는 경기도 포천시에 위치한 광릉시험림이며, 2011년 3월 말 느티나무 용기묘 1-0을 3000본 $ha^{-1}$ 밀도로 식재하였다. 2011년부터 2013년까지 매년 5월에 산림용고형복합비료(N:P:K=3:4:1)를 이용하여 3가지 수준(대조구: 무시비, F1: $180kg\;ha^{-1}$, F2: $360kg\;ha^{-1}$)에 따라 시비 처리를 하였다. 시비 처리 전(2011년)과 후(2012, 2017년)에 조림지의 토양 특성을 분석하였고, 느티나무 조림목의 근원경과 수고를 2011년부터 2016년까지 측정하여 H/D율과 수간 재적을 계산하였다. 시비 수준에 따른 토양 특성은 조사 시기별 차이는 없었으나, 조림 후 시간 경과에 따라서는 전질소 및 유효인산 농도가 감소하다가 증가하였다. 시비 수준에 따른 느티나무 조림목의 근원경, 수고 및 수간 재적 생장은 식재 2년차부터 F2 처리구에서 다른 조사구보다 유의하게 높은 것으로 나타났으며, 이는 느티나무 조림목이 초기 생장 시 많은 양분을 필요로 하는 것을 보여준다. 또한 생존율은 대조구에서 가장 낮았는데 이는 식재 초기에 생장 저하로 하층 식생과의 경쟁에서 우위를 점하지 못했기 때문으로 판단된다. 그러나 식재 6년 후부터 F1과 F2 처리구간 조림목의 수고와 수간 재적 생장 차이가 없어 결과적으로는 리기다소나무 벌채지 내 느티나무 식재 시 조림목의 생존 및 품질 향상과 경제적 효율성을 동시에 만족시키기 위해서는 F1 수준의 시비량을 제안할 수 있다.

Keywords

HOMHBJ_2019_v108n1_29_f0001.png 이미지

Figure 1. Changes in sand (a) silt (b) and clay (c) separate in soil, pH (d), total nitrogen (e), available phosphorus (f) and cation exchange capacity (g) within soil over time after planting. Small letters indicate significant differences among investigation year in the same fertilization level (P < 0.05). Control: no fertilization, F1: 21.6 kg N ha-1 + 28.8 kg P ha-1 + 7.2 kg K ha-1, and F2: 43.2 kg N ha-1 + 57.6 kg P ha-1 + 14.4 kg K ha-1.

HOMHBJ_2019_v108n1_29_f0002.png 이미지

Figure 2. The stem volume of Zelkova serrata trees according to fertilization level. The vertical bars represent standard errors of the mean (n=60). Small letters indicate significant differences among fertilization level in the same age (P < 0.05). Control: no fertilization, F1: 21.6 kg N ha-1 + 28.8 kg P ha-1 + 7.2 kg K ha-1, and F2: 43.2 kg N ha-1 + 57.6 kg P ha-1 + 14.4 kg K ha-1.

Table 1. The characteristics of Zelkova serrata plantation site.

HOMHBJ_2019_v108n1_29_t0001.png 이미지

Table 2. Soil properties before (2011) and after (2012 and 2017) fertilization according to fertilization level in Zelkova serrata plantation site.

HOMHBJ_2019_v108n1_29_t0002.png 이미지

Table 3. The root collar diameter, height, H/D ratio and survival rate of Zelkova serrata trees according to fertilization level.

HOMHBJ_2019_v108n1_29_t0003.png 이미지

References

  1. Baribault, T.W., Kobe, R.K. and Rothstein, D.E. 2010. Soil calcium, nitrogen, and water are correlated with aboveground net primary production in northern hardwood forests. Forest Ecology and Management 260(5): 723-733. https://doi.org/10.1016/j.foreco.2010.05.029
  2. Binkley, D. 1986. Forest Nutrition Management. Willey, USA. pp. 304.
  3. Binkley, D. and Fisher, R.F. 2013. Ecology and Management of Forest Soils. 4th Ed. Willey, USA. pp. 347.
  4. Brady, N.C. and Weil, R.R. 2010. Elements of the Nature and Properties of soils. 3rd Ed. Pearson, USA. pp. 614.
  5. Burdett, A.N. 1990. Physiological processes in plantation establishment and the development of specifications for forest planting stock. Canadian Journal of Forest Research 20(4): 415-427. https://doi.org/10.1139/x90-059
  6. Burdett, A.N., Herring, L.J. and Thompson, C.F. 1984. Early growth of planted spruce. Canadian Journal of Forest Research 14(5): 644-651. https://doi.org/10.1139/x84-116
  7. Burke, I.C., Yonker, C.M., Parton, W.J., Cole, C.V., Schimel, D.S. and Flach, K. 1988. Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Science Society of America Journal 53(3): 800-805. https://doi.org/10.2136/sssaj1989.03615995005300030029x
  8. Byun, J.K., Kim, Y.S., Yi, M.J., Son, Y., Kim, C., Jeong, J.H., Lee, C.Y. and Jeong, Y.H. 2007. Growth response of Pinus densiflora, Larix leptolepis, Betula platyphylla var. japonica and Quercus acutissima seedlings at various levels of fertilization. Journal of Korean Forest Society 96(6): 693-698.
  9. Cho, B.H. 2002. Soil Science. Hyangmunsa, Seoul, Korea. pp. 56-57.
  10. Cho, K.T., Jeong, H.M., Han, Y.S. and Lee, S.H. 2014. Variation of ecological niche of Quercus serrata under elevated $CO_2$ concentration and temperature. Korean Journal of Environment and Biology 32(2): 95-101. https://doi.org/10.11626/KJEB.2014.32.2.095
  11. Cho, M.S., Jeong, J. and Yang, A-R. 2017a. Growing density and cavity volume of container influence major temperate broad-leaved tree species of physiological characteristics in nursery stage. Journal of Korean Forest Society 106(1): 40-53. https://doi.org/10.14578/JKFS.2017.106.1.40
  12. Cho, M.S., Kim, G.N., Lee, S.T. and Moon, H.S. 2012. Effects of fertilization treatments on growth of container and bare root seedlings of Pinus densiflora. Journal of Agriculture & Life Science 46(2): 63-73.
  13. Cho, M.S., Meng, L., Song, J.H., Han, S.H., Bae, K. and Park, B.B. 2017b. The effects of biochars on the growth of Zelkova serrata seedlings in a containerized seedling production system. Forest Science and Technology 13(1): 25-30. https://doi.org/10.1080/21580103.2017.1287778
  14. Cho, M.S., Yang, A-R. and Hwang, J. 2015. Growth performances of container seedlings of deciduous hardwood species grown at three different fertilization treatments. Journal of Korean Forest Society 104(1): 90-97. https://doi.org/10.14578/jkfs.2015.104.1.90
  15. Drake, E.H. and Motto, H.L. 1982. An analysis of the effect of clay and organic matter content on the cation exchange capacity of New Jersey soils. Soil Science 133(5) 281-288. https://doi.org/10.1097/00010694-198205000-00003
  16. Fukatsu, E., Isoda, K., Hirao, T., Takashi, m. and Watanabe, A. 2005. Development and characterization of simple sequence repeat DNA markers for Zelkova serrata. Molecular Ecology Notes 5: 378-380. https://doi.org/10.1111/j.1471-8286.2005.00933.x
  17. Grossnickle, S.C. 2012. Why seedlings survive: influence of plant attributes. New Forests 43: 711-738. https://doi.org/10.1007/s11056-012-9336-6
  18. Hwang, J., Cho, M.S., Kim, W.K., Kim, S.K, Park, B.B. and Lee, S.W. 2013. Development of Container Nursery Production System for High Quality Seedling. National Institute of Forest Science. Seoul, Korea. Research report 13-12. pp. 194.
  19. Hwang, J. and Son, Y. 2006. Short-term effects of thinning and liming on forest soils of pitch pine and Japanese larch plantations in central Korea. Ecological Research 21(5): 671-680. https://doi.org/10.1007/s11284-006-0170-1
  20. Hwang, J.O., Son, Y., Yi, M.J., Byoun, J.K., Jung, J.H. and Lee, C.Y. 2003. Studies on relationship between composition and type of fertilizer and seedling. Forest Bioenergy 22(2): 44-53.
  21. Jeong, J.H., Koo, K.S., Lee, C.H. and Kim, C.S. 2002. Physico-chemical properties of Korean forest soils by regions. Journal of Korean Forestry Society 91(6): 694-700.
  22. Jin, H.O., Yi, M.J., Shin, Y.O., Kim, J.J. and Jeon, S.K. 1994. Forest Soil. Hyangmunsa, Seoul, Korea. pp. 325.
  23. Jones Jr, J.B. 1999. Soil and Plant Analysis Laboratory Registry. 2nd Ed. Soil and Plant Analysis Council. CRC Press LLC. Florida, USA. pp. 209.
  24. KFS (Korea Forest Service). 2018a. Annual Action Plan of Forest Resources. Korea Forest Service, Korea. pp. 312.
  25. KFS (Korea Forest Service). 2018b. Results of Silviculture in 2017. Korea Forest Service, Korea. pp. 653.
  26. KFS (Korea Forest Service). 2018c. Statistical Yearbook of Forestry. Korea Forest Service, Korea. pp. 444.
  27. Kim, C., Jo, C.G., Baek, G., Park, S.W., Cho, H.S. and Ma, H.S. 2016. Soil physiochemical properties of tree plantations in a fire-disturbed forest and an undisturbed stand in Ulsan metropolitan city. Journal of Korean Forestry Society 105(2): 167-176. https://doi.org/10.14578/jkfs.2016.105.2.167
  28. Kim, C., Kim, W.S., An, H.C., Cho, H.S., Choo, G.C. and Lim, J.T. 2012. Short-term effects on soil property and leaf characteristics after soil amendment treatments in chestnut (Castanea crenata S. et Z.) orchards. Journal of Korean Forestry Society 101(3): 405-411.
  29. Kim, C., Son, Y., Lee, W.K., Jeong, J. and Noh, N.J. 2009. Influence of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. Forest Ecology and Management 257: 1420-1426. https://doi.org/10.1016/j.foreco.2008.12.015
  30. Kim, I.S. and Lee, J.H. 2013. Geographic variation of seed characteristics and 1-year-old seedling growth of Zelkova serrata. Korean Journal of Agricultural and Forest Meteorology 15(4): 234-244. https://doi.org/10.5532/KJAFM.2013.15.4.234
  31. Kim, J.H., Kim, E.K., Kim, W.T. and Yoon, Y.H. 2014. The effects of functional pipe on Zelkova serrata growth in poorly drained planting ground. Journal of Environmental Science International 23(1): 81-88. https://doi.org/10.5322/JESI.2014.23.1.81
  32. Kim, J.S., Son, Y., Lim, J.H. and Kim, Z.S. 1996. Aboveground biomass, N and P distribution, and litterfall in Pinus rigida and Larix leptolepis plantations. Journal of Korean Forestry Society 85(3): 416-425.
  33. Kolb, T.E., Bowersox, T.W. and McCormick, L.H. 1990. Influence of light intensity on weed-induced stresses of tree seedlings. Canadian Journal of Forest Research 20(5): 503-507. https://doi.org/10.1139/x90-066
  34. Kozlowski, T.T. and Pallardy, S.G. 1996. Physiology of Woody Plants. 2nd Ed. Academic Press Inc., Oval Road, London. pp. 411.
  35. Lee, C.B. 1986. Dendrology. Hyangmunsa, Seoul, Korea. pp. 161.
  36. Lee, C.Y., Jeong, J.H., Son, Y., Byun, J.K. and Koo, C.D. 2009. Forest soils. Korean Journal of Soil Science and Fertilizer 42(1): 238-258.
  37. Lee, C.Y. and Park, B.W. 1988. Prospects and effect of forest fertilization. Journal of Korean Forestry Society 77(1): 109-115.
  38. Lee, I.K. and Son, Y. 2004. Effects of nitrogen and phosphorus fertilization on soil chemical properties of Pinus rigida and Larix kaempferi plantations in Yangpyeong area, Gyeonggi province. Journal of Korean Forestry Society 93(5): 349-359.
  39. McMillin, J.D. and Wagner, M.R. 1995. Effects of water stress on biomass partitioning of ponderosa pine seedlings during primary root growth and shoot growth periods. Forest Science 41(3): 594-610.
  40. Meyer, V.F., Redente, E.F., Barbarick, K.A., Brobst, R.B., Paschke, M.W. and Miller, A.L. 2004. Plant and soil responses to biosolids application following forest fire. Journal of Environmental Quality 33: 873-881. https://doi.org/10.2134/jeq2004.0873
  41. Nambiar, E.K.S. and Sands, R. 1993. Competition for water and nutrients in forests. Canadian Journal of Forest Research 23(10): 1955-1968. https://doi.org/10.1139/x93-247
  42. Neary, D.G., Ryan, K.C. and DeBano, L.F. 2005. Wildland fire in ecosystems: effects of fire on soil and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, USA. pp. 250.
  43. NIFoS (National Institute of Forest Science). 2005. Standard Textbook on Forest Tending Work. I. General Forest. Korea: National Institute of Forest Science, pp. 64-73.
  44. Oh, K.I., Cho, H.D., An, K.W. and Kim, C. 1999. Changes of ion concentrations in soil solution according to different cutting intensities and sampling times in Pinus rigida plantations. Journal of Korean Forestry Society 88(4): 438-445.
  45. Oyama, H., Fuse, O., Tomimatsu, H. and Seiwa, K. 2018. Variable seed behavior increases recruitment success of a hardwood tree, Zelkova serrata, in spatially heterogeneous forest environments. Forest Ecology and Management 415-416: 1-9. https://doi.org/10.1016/j.foreco.2018.02.004
  46. Park, J.H. 2014. Phytochemical variation of Quercus mongolica Fisch. ex Ledeb. and Quercus serrata murray (Fagaceae) in Mt. Jiri, Korea. Korean Journal of Environment and Ecology 28(5): 574-587. https://doi.org/10.13047/KJEE.2014.28.5.574
  47. Park, J.H., Jung, S.Y., Yoo, B.O., Ju, N.G., Lee. K.S., Park, Y.B. and Kim, H.H. 2015. Comparison of height and DBH growth characteristics for Quercus acuta and Quercus serrata in southern Korea. Journal of Agriculture & Life Science 49(6): 19-26. https://doi.org/10.14397/jals.2015.49.6.19
  48. Park, J.H., Oh, K.I., An, K.W. and Kim, C. 2004. Growth characteristics of Quercus acutissima seedlings planted in various of strip clear-cutting of Pinus rigida plantations. Journal Korean Forestry Society 93(5): 360-371.
  49. Pinto, J.R., Marshall, J.D., Dumroese, R.K., Davis, A.S. and Cobos, D.R. 2011. Establishment and growth of container seedlings for reforestation: A function of stocktype and edaphic conditions. Forest Ecology and Management 261(11): 1876-1884. https://doi.org/10.1016/j.foreco.2011.02.010
  50. RDA (Rural Development Administration). 2000. Soil and Plant Analysis. National Institute of Agricultural Sciences, Rural Development Administration. pp. 202.
  51. Smith, D.M., Larson, B.C., Kelty, M.J. and Ashton, P.M. 1996. The Practice of Silviculture: Applied Forest Ecology. 9th Ed. Wiley, USA. pp. 537.
  52. Son, Y., Park, I.H., Yi, M.J., Jin, H.O., Kim, D.Y., Kim, R.H. and Hwang, J.O. 2004. Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecological Research 19(1): 21-28. https://doi.org/10.1111/j.1440-1703.2003.00617.x
  53. van den Driessche, R., Rude, W. and Martens, L. 2003. Effect of fertilization and irrigation on growth of aspen (Populus tremuloides Michx.) seedlings over three seasons. Forest Ecology and Management 186: 381-389. https://doi.org/10.1016/S0378-1127(03)00306-2
  54. Vesterdal, L., Schmidt, I.K., Callesen, I., Nilsson, L.O. and Gundersen, P. 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management 255(1): 35-48. https://doi.org/10.1016/j.foreco.2007.08.015
  55. Welander, N.T. and Ottosson, B. 2000. The influence of low light, drought and fertilization on transpiration and growth in young seedlings of Quercus robur L. Forest Ecology and Management 127: 139-151. https://doi.org/10.1016/S0378-1127(99)00126-7
  56. Wilson, E,R., Vitols, K.C. and Park, A. 2007. Root characteristics and growth potential of container and bare-root seedlings of red oak (Quercus rubra L.) in Ontario, Canada. New Forests 34(2): 163-176. https://doi.org/10.1007/s11056-007-9046-7
  57. Won, K.R., Hong, N.E., Lee, K.W., Yoo, B.O., Park, Y.B., Jung, S.Y. and Byeon, H.S. 2014. Mechanical and physical wood properties of Quercus serrata due to damaged stands in southern region of Korea. Journal of Agriculture & Life Science 48(6): 133-140. https://doi.org/10.14397/jals.2014.48.6.133
  58. Yang, A-R., Cho, M.S. and Hwang, J. 2014. The effects of seedling types and soil properties in relation to aspects on the early growth of planted Zelkova serrata seedlings. Journal of Agriculture & Life Science 48(4): 1-12. https://doi.org/10.14397/jals.2014.48.4.1
  59. Yang, A-R., Hwang, J., Cho, M.S. and Son, Y. 2016. The effect of fertilization on early growth of konara oak and Japanese zelkova seedlings planted in a harvested pitch pine plantation. Journal of Forestry Research 27(4): 863-870. https://doi.org/10.1007/s11676-016-0210-9
  60. Yang, A-R., Hwang, J., Cho, M.S. and Song, S.W. 2013. Soil physical and chemical properties with plantation regions and stand age in Pinus rigida and Larix kaempferi plantations. Journal of Korean Forestry Society 102(4): 578-586. https://doi.org/10.14578/jkfs.2013.102.4.578
  61. Yoon, T.K., Zhao, Y., Noh, N.J., Han, S., Kang, H. and Son, Y. 2014. Early fertilization and absorbent treatments continuously enhanced windbreak tree growth and soil properties in the Hetao Plain of Inner Mongolia, China. Forest Science and Technology 10(1): 46-50. https://doi.org/10.1080/21580103.2013.834276

Cited by

  1. 묘령 및 식재밀도에 따른 느티나무 조림목의 초기 생육 특성 vol.109, pp.4, 2019, https://doi.org/10.14578/jkfs.2020.109.4.390