DOI QR코드

DOI QR Code

Calibration of cultivar parameters for cv. Shindongjin for a rice growth model using the observation data in a low quality

저품질 관측자료를 사용한 벼 생육 모델의 신동진 품종모수 추정

  • Hyun, Shinwoo (Department of Plant Science, Seoul National University) ;
  • Kim, Kwang Soo (Department of Plant Science, Seoul National University)
  • 현신우 (서울대학교 식물생산과학부) ;
  • 김광수 (서울대학교 식물생산과학부)
  • Received : 2018.11.29
  • Accepted : 2019.03.27
  • Published : 2019.03.30

Abstract

Crop models depend on a large number of input parameters including the cultivar parameters that represent the genetic characteristics of a given cultivar. The cultivar parameters have been estimated using high quality data for crop growth, which require considerable costs and efforts. The objective of this study was to examine the feasibility of using low quality data for the parameter estimation. In the present study, the cultivar parameters for cv. Shindongjin were estimated using the data obtained from the report of new cultivars development and research from 2005 to 2016. The root mean square errors (RMSE) of the heading dates were less than 3 days when the parameters associated with phenology were estimated. In contrast, the coefficient of determination for yield tended to be less than 0.1. The large errors incurred by the fact that no growth data collected over a season was used for parameter estimation. This suggests that detailed observation data needs to be prepared for parameter calibration, which would be aided by remote sensing approaches. The occurrence of natural disasters during a growing season has to be considered because crop models cannot take into account the effects of those events. Still, our results provide a reasonable range for the parameters, which could be used to set the boundary of a given parameter for cultivars similar to cv. Shindongjin in further studies.

작물 생육모델이 요구하는 다양한 모수들 중 품종의 유전적 특성을 나타내기 위한 품종모수는 개별 품종별로 추정되어야 한다. 모수 추정을 위해 상당한 비용과 노력이 요구되는 고품질의 상세한 생육자료를 사용하여 하나, 자료의 가용성이 대체로 낮기 때문에, 품질이 낮더라도 쉽게 얻을 수 있는 자료를 이용하여 품종모수를 추정하는 방식의 가능성과 문제점을 파악하는 것이 필요하다. 본 연구에서는 신품종개발 공동연구 보고서로부터 2005년부터 2016년까지 신동진 벼에 대한 자료들을 수집하고, 이를 사용하여 신동진 벼의 품종모수를 추정하였다. 또한, 추정된 모수를 사용한 생육모의 결과들을 활용하여 개별 항목에 대한 신뢰도를 평가하였다. 출수기에 대해서는 RMSE가 대부분 3일 이하로, 비교적 정확하게 모의할 수 있는 모수가 추정되었다. 수량에 대해서는 RMSE가 대부분 700 kg/ha 이하로 작게 나타났으나, 결정계수가 대부분 0.1 이하로 나타나, 신뢰도 높은 모수가 추정된 것으로 판단하기 어려웠다. 이러한 결과는 작물이 자라는 중간 단계의 생육 관측자료를 비교하지 못하였기 때문일 것으로 사료되었다. 따라서, 모수의 신뢰도를 높이기 위해 시기별 생육자료의 측정이 필요할 것이며, 이를 위한 시간과 비용을 절감하기 위한 기법이 개발되어야 할 것이다. 기상자료와 실제 기상과의 차이로 인한 오차를 줄이기 위해서는 방재기상자료와 같은 가까운 기상자료를 사용하거나, 공간내삽 등의 방법을 활용하여야 할 것이다. 또한, 자연재해와 같이 모델에서 고려할 수 없는 요인으로 인해 영향을 받은 자료는 제외하는 것이 모수의 신뢰도를 높일 수 있을 것이다. 본 연구에서 제시한 출수기와 수량 추정치의 오차가 작았던 모수들의 범위는 이후 연구에서 신동진과 유사한 품종의 모수를 추정할 때 참고자료로 사용될 수 있을 것이다.

Keywords

NRGSBM_2019_v21n1_42_f0001.png 이미지

Fig. 1. Root Mean Square Error of heading date estimates for cv. Shindongjin using ORYZA2000 model.

NRGSBM_2019_v21n1_42_f0002.png 이미지

Fig. 2. The values of (A) the determinant coefficient and (B) root mean square error of yield estimates using ORYZA2000 model, respectively.

Table 1. List of the phenology parameters for calibration

NRGSBM_2019_v21n1_42_t0001.png 이미지

Table 2. List of the growth parameters for calibration

NRGSBM_2019_v21n1_42_t0002.png 이미지

Table 3. The quantile values of the phenology development parameters calibrated with DRATES for ORYZA2000 model

NRGSBM_2019_v21n1_42_t0003.png 이미지

Table 4. The quantile values of the phenological development parameters calibrated with QUESO for ORYZA2000 model

NRGSBM_2019_v21n1_42_t0004.png 이미지

Table 5. The quantile values of the growth parameters calibrated with QUESO for ORYZA2000 model

NRGSBM_2019_v21n1_42_t0005.png 이미지

References

  1. Ahn, E. K., Y. J. Won, H. M. Park, K. H. Jung, and U. J. Hyun, 2018: Feed value and yield potential of main whole-crop silage rice cultivars with harvesting time in the central plains of Korea. Korean Journal of Crop Science 63(4), 294-303. https://doi.org/10.7740/KJCS.2018.63.4.294
  2. Asseng, S., F. Ewert, P. Martre, R. P. Rotter, D. B. Lobell, D. Cammarano, B. A. Kimball, M. J. Ottman, G. W. Wall, J. W. White, M. P. Reynolds, P. D. Alderman, P. V. V. Prasad, P. K. Aggarwal, J. Anothai, B. Basso, C. Biernath, A. J. Challinor, G. De Sanctis, J. Doltra, E. Fereres, M. Garcia-Vila, S. Gayler, G. Hoogenboom, L. A. Hunt, R. C. Izaurralde, M. Jabloun, C. D. Jones, K. C. Kersebaum, A. K. Koehler, C. Muller, S. Naresh Kumar, C. Nendel, G. O'Leary, J. E. Olesen, T. Palosuo, E. Priesack, E. Eyshi Rezaei, A. C. Ruane, M. A. Semenov, I. Shcherbak, C. Stockle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, P. J. Thorburn, K. Waha, E. Wang, D. Wallach, J. Wolf, Z. Zhao, and Y. Zhu, 2014: Rising temperatures reduce global wheat production. Nature Climate Change 5(2), 143-147. https://doi.org/10.1038/nclimate2470
  3. Asseng, S., F. Ewert, C. Rosenzweig, J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. J. Thorburn, R. P. Rotter, D. Cammarano, N. Brisson, B. Basso, P. Martre, P. K. Aggarwal, C. Angulo, P. Bertuzzi, C. Biernath, A. J. Challinor, J. Doltra, S. Gayler, R. Goldberg, R. Grant, L. Heng, J. Hooker, L. A. Hunt, J. Ingwersen, R. C. Izaurralde, K. C. Kersebaum, C. Muller, S. Naresh Kumar, C. Nendel, G. O'Leary, J. E. Olesen, T. M. Osborne, T. Palosuo, E. Priesack, D. Ripoche, M. A. Semenov, I. Shcherbak, P. Steduto, C. Stockle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, M. Travasso, K. Waha, D. Wallach, J. W. White, J. R. Williams, and J. Wolf, 2013: Uncertainty in simulating wheat yields under climate change. Nature Climate Change 3(9), 827-832. https://doi.org/10.1038/nclimate1916
  4. Boote, K., C. Porter, J. Jones, P. Thorburn, K. Kersebaum, G. Hoogenboom, J. White, and J. Hatfield, 2016: Sentinel site data for model improvement-Definition and characterization. Advances in Agricultural Systems Modeling 7, 125-158.
  5. Bouman, B. A. M., M. J. Kropff, T. P. Tuong, M. C. S. Wopereis, H. F. M. ten Berge, and H. H. van Laar, 2001: ORYZA2000: modeling lowland rice. Los Banos,Philippines, International Rice Research Institute, and Wageningen: Wageningen University and Research Centre, 235pp.
  6. Braman, K., T. A. Oliver, and V. Raman, 2013: Bayesian analysis of syngas chemistry models. Combustion Theory and Modelling 17(5), 858-887. https://doi.org/10.1080/13647830.2013.811541
  7. Cheung, S. H., T. A. Oliver, E. E. Prudencio, S. Prudhomme, and R. D. Moser, 2011: Bayesian uncertainty analysis with applications to turbulence modeling. Reliability Engineering & System Safety 96(9), 1137-1149. https://doi.org/10.1016/j.ress.2010.09.013
  8. Estacio-Hiroms, K. C., E. E. Prudencio, N. P. Malaya, M. Vohra, and D. McDougall, 2016: The QUESO Library, User's Manual. arXiv preprint arXiv:1611.07521.
  9. He, J., J. W. Jones, W. D. Graham, and M. D. Dukes, 2010: Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agricultural Systems 103(5), 256-264.
  10. Hoogenboom, G., J. W. Jones, P. C. Traore, and K. J. Boote, 2012: Experiments and data for model evaluation and application. Improving Soil Fertility Recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT), 9-18.
  11. Hyun, S., and K. S. Kim, 2017: Estimation of heading date for rice cultivars using ORYZA (v3). Korean Journal of Agricultural and Forest Meteorology 19(4), 246-251. https://doi.org/10.5532/KJAFM.2017.19.4.246
  12. Jones, J. W., J. He, K. J. Boote, P. Wilkens, C. H. Porter, and Z. Hu, 2011: Estimating DSSAT cropping system cultivar-specific parameters using Bayesian Techniques, In: Ahuja, L. R. and L. Ma(eds.) Methods of Introducing System Models into Agricultural Research. Madison, WI, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 365-394.
  13. Kersebaum, K. C., K. J. Boote, J. Jorgenson, C. Nendel, M. Bindi, C. Fruhauf, T. Gaiser, G. Hoogenboom, C. Kollas, and J. E. Olesen, 2015: Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Environmental Modelling & Software 72, 402-417. https://doi.org/10.1016/j.envsoft.2015.05.009
  14. Kim, D. J., S. O. Kim, K. H. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP8. 5 climate change scenarios. Korean Journal of Agricultural and Forest Meteorology 14(3), 132-141. https://doi.org/10.5532/KJAFM.2012.14.3.132
  15. Kim, D. J., J. H. Roh, J. G. Kim, and J. I. Yun, 2013: The Influence of shifting planting date on cereal grains production under the projected climate change. Korean Journal of Agricultural and Forest Meteorology 15(1), 26-39. https://doi.org/10.5532/KJAFM.2013.15.1.026
  16. Kim, J., C. K. Lee, H. Kim, B. W. Lee, and K. S. Kim, 2015a: Requirement analysis of a system to predict crop yield under climate change. Korean Journal of Agricultural and Forest Meteorology 17(1), 1-14. https://doi.org/10.5532/KJAFM.2015.17.1.1
  17. Kim, J., W. Sang, P. Shin, H. Cho, and M. Seo, 2018: Calibration of crop growth model CERES-MAIZE with yield trial data. Korean Journal of Agricultural and Forest Meteorology 20(4), 277-283. https://doi.org/10.5532/KJAFM.2018.20.4.277
  18. Kim, J., W. Sang, P. Shin, H. Cho, M. Seo, B. Yoo, and K. S. Kim, 2015b: Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. Journal of Crop Science and Biotechnology 18(4), 257-264. https://doi.org/10.1007/s12892-015-0103-z
  19. Kim, K. Y., G. M. Lee, K. I. Noh, K. Y. Ha, J. Y. Son, B. K. Kim, J. K. Ko, and C. K. Kim, 2007: Varietal difference of germination, fat acidity, and lipoxygenase activity of rice grain stored at high temperature. Korean Journal of Crop Science 52(1), 29-35.
  20. Lee, C., 2008: Development and application of model for estimating grain weight and grain nitrogen content in rice. Dissertation, Seoul National University.
  21. Lee, C. K., J. Kim, and K. S. Kim, 2015: Development and application of a weather data service client for preparation of weather input files to a crop model. Computers and Electronics in Agriculture 114, 237-246. https://doi.org/10.1016/j.compag.2015.03.021
  22. Lee, C. K., J. Kim, J. Shon, W. H. Yang, Y. H. Yoon, K. J. Choi, and K. S. Kim, 2012: Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4), 207-221. https://doi.org/10.5532/KJAFM.2012.14.4.207
  23. Lee, S., and K. S. Kim, 2018: Estimation of fresh weight for chinese cabbage using the Kinect sensor. Korean Journal of Agricultural and Forest Meteorology 20(2), 205-213. https://doi.org/10.5532/KJAFM.2018.20.2.205
  24. Li, T., B. Bouman, and A. Boling, 2009: The calibration and validation of ORYZA2000. Los Banos, Philippines, International Rice Research Institute.
  25. Li, T., E. Humphreys, G. Gill, and S. Kukal, 2011: Evaluation and application of ORYZA2000 for irrigation scheduling of puddled transplanted rice in north west India. Field Crops Research 122(2), 104-117. https://doi.org/10.1016/j.fcr.2011.03.004
  26. Lima, E., J. Oden, D. Hormuth, T. Yankeelov, and R. Almeida, 2016: Selection, calibration, and validation of models of tumor growth. Mathematical Models and Methods in Applied Sciences 26(12), 2341-2368. https://doi.org/10.1142/S021820251650055X
  27. Maiorano, A., P. Martre, S. Asseng, F. Ewert, C. Muller, R. P. Rotter, A. C. Ruane, M. A. Semenov, D. Wallach, and E. Wang, 2017: Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field crops research 202, 5-20. https://doi.org/10.1016/j.fcr.2016.05.001
  28. Munakata, K., 1976: Effects of temperature and light on the reproductive growth and ripening of rice. Climate and Rice, 187-210.
  29. Oden, J. T., E. A. Lima, R. C. Almeida, Y. Feng, M. N. Rylander, D. Fuentes, D. Faghihi, M. M. Rahman, M. DeWitt, and M. Gadde, 2016: Toward predictive multiscale modeling of vascular tumor growth. Archives of Computational Methods in Engineering 23(4), 735-779. https://doi.org/10.1007/s11831-015-9156-x
  30. Park, J. S., and H. D. Kim, 2009: Viviparous germination characteristics of rice varieties adaptable to central region of Korea. Korean Journal of Crop Science 54(3), 241-248.
  31. Parry, M. L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer, 2004: Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global environmental change 14(1), 53-67. https://doi.org/10.1016/j.gloenvcha.2003.10.008
  32. Prudencio, E. E., and K. W. Schulz, 2011: The parallel C++ statistical library 'QUESO': Quantification of uncertainty for estimation, simulation and optimization. European Conference on Parallel Processing, Springer, 398-407.
  33. Sanchez, B., A. Rasmussen, and J. R. Porter, 2014: Temperatures and the growth and development of maize and rice: a review. Global change biology 20(2), 408-417. https://doi.org/10.1111/gcb.12389
  34. Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Climate Change Research 1(2), 121-131.
  35. Singh, J., and J. Takahashi, 1962: Effect of varying dates of top-dressing of nitrogen on plant characters leading to tendency to lodging in rice. Soil Science and Plant Nutrition 8(5), 1-8. https://doi.org/10.1080/00380768.1962.10431004
  36. Song, Y., C. Lim, W. Lee, K. C. Eom, S. Choi, E. Lee, and E. Kim, 2014: Applicability analysis of major crop models on Korea for the adaptation to climate change. Journal of Climate Change Research 5, 109-125. https://doi.org/10.15531/KSCCR.2014.5.2.109
  37. Soundharajan, B., and K. Sudheer, 2013: Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework. Paddy and Water Environment 11(1-4), 59-71. https://doi.org/10.1007/s10333-011-0293-z
  38. Tans, P., and R. Keeling, 2018: Trends in atmospheric carbon dioxide [Online], NOAA/ ESRL, Available: http://www.esrl.noaa.gov/gmd/ccgg/trends
  39. Tao, F., and Z. Zhang, 2010: Adaptation of maize production to climate change in North China Plain: quantify the relative contributions of adaptation options. European Journal of Agronomy 33(2), 103-116. https://doi.org/10.1016/j.eja.2010.04.002
  40. Unkovich, M., J. Baldock, and M. Forbes, 2010: Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Advances in agronomy 105, Academic Press, 173-219. https://doi.org/10.1016/S0065-2113(10)05005-4
  41. van Oort, P., T. Zhang, M. De Vries, A. Heinemann, and H. Meinke, 2011: Correlation between temperature and phenology prediction error in rice (Oryza sativa L.). Agricultural and Forest Meteorology 151(12), 1545-1555. https://doi.org/10.1016/j.agrformet.2011.06.012
  42. Wikarmpapraharn, C., and E. Kositsakulchai, 2010: Evaluation of ORYZA2000 and CERES-Rice models under potential growth condition in the Central Plain of Thailand. Thai Journal of Agricultural Science 43(1), 17-29.
  43. Yoshida, S., 1981: Fundamentals of rice crop science, International Rice Research Institute,
  44. Yuan, S., S. Peng, and T. Li, 2017: Evaluation and application of the ORYZA rice model under different crop managements with high-yielding rice cultivars in central China. Field Crops Research 212, 115-125. https://doi.org/10.1016/j.fcr.2017.07.010