DOI QR코드

DOI QR Code

Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: A numerical simulation study

  • Lee, Youngjin (Department of Radiological Science, Gachon University)
  • Received : 2018.04.05
  • Accepted : 2018.10.05
  • Published : 2019.04.25

Abstract

To improve the noise characteristics, software-based noise reduction algorithms are widely used in cadmium zinc telluride (CZT) pixelated semiconductor gamma camera system. The purpose of this study was to develop an improved median filtering algorithm using a thresholding method for noise reduction in a CZT pixelated semiconductor gamma camera system. The gamma camera system simulated is a CZT pixelated semiconductor detector with a pixel-matched parallel-hole collimator and the spatial resolution phatnom was designed with the Geant4 Application for Tomography Emission (GATE). In addition, a noise reduction algorithm with a median filter using an improved thresholding method is developed and we applied our proposed algorithm to an acquired spatial resolution phantom image. According to the results, the proposed median filter improved the noise characteristics compared to a conventional median filter. In particular, the average for normalized noise power spectrum, contrast to noise ratio, and coefficient of variation results using the proposed median filter were 10, 1.11, and 1.19 times better than results using conventional median filter, respectively. In conclusion, our results show that the proposed median filter using improved the thresholding method results in high imaging performance when applied in a CZT semiconductor gamma camera system.

Keywords

References

  1. M. Bocher, I.M. Blevis, L. Tsukerman, Y. Shrem, G. Kovalski, L. Volokh, A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential, Eur. J. Nucl. Med. Mol. Imag. 37 (2010) 1887-1902. https://doi.org/10.1007/s00259-010-1488-z
  2. E.B. Sokole, A. Plachcinska, A. Britten, M.L. Georgosopoulou, W. Tindale, R. Klett, Routine quality control recommendations for nuclear medicine instrumentation, Eur. J. Nucl. Med. Mol. Imag. 37 (2010) 662-671. https://doi.org/10.1007/s00259-009-1347-y
  3. H.O. Anger, Scintillation camera with multichannel collimators, J. Nucl. Med. 5 (1964) 515-531.
  4. H. Wieczorek, A. Goedicke, Analytical model for SPECT detector concepts, IEEE Trans. Nucl. Sci. 53 (2006) 1102-1112. https://doi.org/10.1109/TNS.2006.874954
  5. J.H. Kim, Y. Choi, K.S. Joo, B.S. Shin, J.W. Chong, S.E. Kim, K.H. Lee, Y.S. Choe, B.T. Kim, Development of a miniature scintillation camera using an NaI(Tl) scintillator and PSPMT for scintimammograph, Phys. Med. Biol. 45 (2000) 3481-3488. https://doi.org/10.1088/0031-9155/45/11/326
  6. H.C. Kim, H.J. Kim, K. Kim, M.H. Lee, Y. Lee, Comparison of image uniformity with photon counting and conventional scintillation single-photon emission computed tomography system: a Monte Carlo simulation study, Nucl. Eng. Technol. 49 (2017) 776-780. https://doi.org/10.1016/j.net.2016.12.002
  7. P. Yang, C.D. Harmon, F.P. Doty, J.A. Ohlhausen, Effect of humidity on scintillation performance in Na and Tl activated CsI crystals, IEEE Trans. Nucl. Sci. 61 (2014) 1024-1031. https://doi.org/10.1109/TNS.2014.2300471
  8. G. Matsumoto, Y. Imura, H. Morii, A. Miyake, T. Aoki, Analysis of artifact with X-ray CT using energy band by photon counting CdTe detector, Nucl. Instrum. Methods Phys. Res. 621 (2010) 292-294. https://doi.org/10.1016/j.nima.2010.05.056
  9. F. Weng, S. Bagchi, Y. Zan, Q. Huang, Y. Seo, An energy-optimized collimator design for a CZT-based SPECT camera, Nucl. Instrum. Methods Phys. Res. 806 (2016) 330-339. https://doi.org/10.1016/j.nima.2015.09.115
  10. C. Scheiber, CdTe and CdZnTe detectors in nuclear medicine, Nucl. Instrum. Methods Phys. Res. 448 (2000) 513-524. https://doi.org/10.1016/S0168-9002(00)00282-5
  11. K. Ogawa, N. Ohmura, H. Iida, K. Nakamura, T. Nakahara, A. Kubo, Development of an ultra-high resolution SPECT system with a CdTe semiconductor detector, Ann. Nucl. Med. 23 (2009) 763-770. https://doi.org/10.1007/s12149-009-0293-x
  12. S. Lee, H.J. Kim, S.Y. Bae, Y. Lee, Experimental study of an easily controlled ultra-high-resolution pixel-matched parallel-hole collimator with a small cadmium zinc telluride pixelated gamma camera system, J. Med. Imag. Radiat. Sci. 47 (2016) 276-282. https://doi.org/10.1016/j.jmir.2016.06.001
  13. Y.J. Lee, S.J. Park, S.W. Lee, D.H. Kim, Y.S. Kim, H.J. Kim, Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies, J. Kor. Phys. Soc. 62 (2013) 1317-1322. https://doi.org/10.3938/jkps.62.1317
  14. Y.N. Choi, S. Lee, H.J. Kim, Reducing radiation dose by application of optimized low-energy X-ray filters to K-edge imaging with a photon counting detector, Phys. Med. Biol. 61 (2016) N35-N49. https://doi.org/10.1088/0031-9155/61/2/N35
  15. B.S. Bhatia, S.L. Bugby, J.E. Lees, A.C. Perkins, A scheme for assessing the performance characteristics of small field-of-view gamma gameras, Phys. Med. 31 (2015) 98-103. https://doi.org/10.1016/j.ejmp.2014.08.004
  16. O. Gal, B. Dessus, F. Jean, F. Laine, C. Leveque, Operation of the CARTOGAM portable gamma camera in a photon-counting mode, IEEE Trans. Nucl. Sci. 48 (2001) 1198-1204. https://doi.org/10.1109/23.958750
  17. H. Jeon, H. Kim, C.H. Lee, G. Cho, A simulation study on spatial resolution and noise power spectra of a URA-based multi-hole collimator in a small gamma camera, J. Nucl. Sci. Technol. 5 (2008) 530-533.
  18. P. Chatterjee, P. Milanfar, Is denoising dead? IEEE Trans. Nucl. Sci. 19 (2010) 895-911.
  19. J.T. Dobbins III, E. Samei, N.T. Ranger, Y. Chen, Intercomparison of methods for image quality characterization. II. Noise power spectrum, Med. Phys. 33 (2006) 1466-1475. https://doi.org/10.1118/1.2188816
  20. X. Zhang, Image denoising using local Wiener filter and its method noise, Optik 127 (2016) 6821-6828. https://doi.org/10.1016/j.ijleo.2016.05.002
  21. G. Gao, Y. Liu, An efficient three-stage approach for removing salt & pepper noise from digital images, Optik 126 (2015) 467-471. https://doi.org/10.1016/j.ijleo.2014.11.004
  22. K. Seo, S.H. Kim, S.H. Kang, J. Park, C.L. Lee, Y. Lee, The effect of total variation (TV) technique for noise reduction in radio-magnetic X-ray image: quantitative study, J. Magn. 21 (2016) 593-598. https://doi.org/10.4283/JMAG.2016.21.4.593
  23. S.H. Kang, K.Y. Kim, Y. Hwang, J.W. Hong, S.R. Baek, C.L. Lee, Y. Lee, A Monte Carlo simulation study for feasibility of total variation (TV) noise reduction technique using digital mouse whole body (MOBY) phantom image, Optik 156 (2018) 197-203. https://doi.org/10.1016/j.ijleo.2017.10.151
  24. Y. Lee, A.C. Lee, H.J. Kim, A Monte Carlo simulation study of an improved Kedge log-subtratction X-ray imaging using a photon counting CdTe detector, Nucl. Instrum. Methods Phys. Res. 830 (2016) 381-390. https://doi.org/10.1016/j.nima.2016.06.024
  25. I. Buvat, I. Castiglioni, Monte Carlo simulations in SPET and PET, Q. J. Nucl. Med. 46 (2002) 48-61.
  26. S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D.R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, I. Buvat, GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Phys. Med. Biol. 56 (2011) 881-901. https://doi.org/10.1088/0031-9155/56/4/001
  27. C. Robert, N. Fourrier, D. Sarrut, S. Stute, P. Gueth, L. Grevillot, I. Buvat, PET-based dose delivery verification in proton therapy: a GATE based simulation study of five PET system designs in clinical conditions, Phys. Med. Biol. 58 (2013) 6867-6885. https://doi.org/10.1088/0031-9155/58/19/6867
  28. S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, I. Buvat, Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images, Phys. Med. Biol. 56 (2011) 6441-6457. https://doi.org/10.1088/0031-9155/56/19/017
  29. S. Li, Q. Zhang, Z. Xie, Q. Liu, B. Xu, K. Yang, C. Li, Q. Ren, GATE simulation of a LYSO-based SPECT imager: validation and detector optimization, Nucl. Instrum. Methods Phys. Res. 773 (2015) 21-26. https://doi.org/10.1016/j.nima.2014.10.031
  30. D. Sarrut, M. Bardies, N. Boussion, N. Freud, S. Jan, J.M. Letang, G. Loudos, L. Mainge, S. Marcatili, T. Mauxion, P. Papadimitroulas, Y. Perrot, U. Pietrzyk, C. Robert, D.R. Schaart, D. Visvikis, I. Buvat, A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications, Med. Phys. 41 (2014), 064301-1-14. https://doi.org/10.1118/1.4871617
  31. C. Beijst, M. Elschot, M.A. Viergever, H.W.A.M. de jong, A parallel-cone collimator for high-energy SPECT, J. Nucl. Med. 56 (2015) 476-482. https://doi.org/10.2967/jnumed.114.149658
  32. N. Kubo, K. Tsuchiya, T. Shiga, S. Kojima, A. Suzuki, Y. Ueno, K. Kobashi, N. Tamaki, Collimator for variable sensitivity and spatial resolution without the need for exchange, IEEE Trans. Nucl. Sci. 61 (2014) 2489-2493. https://doi.org/10.1109/TNS.2014.2333748
  33. Y. Lee, W. Kang, Performance evaluation of high-resolution square parallel-hole collimators with a CZT room temperature pixelated semiconductor SPECT system: a Monte Carlo simulation study, J. Instrum. (2015), https://doi.org/10.1088/1748-0221/10/07/T07004.
  34. Y.J. Lee, H.J. Ryu, S.W. Lee, S.J. Park, H.J. Kim, Comparision of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system, Nucl. Instrum. Methods Phys. Res. 713 (2013) 33-39. https://doi.org/10.1016/j.nima.2013.03.014
  35. B. Wang, Q. Pan, Soft-threshold histogram weighted filtering with correlativity for high density salt-pepper noise images, Acta Electron. Sin. 35 (2007) 1347-1351. https://doi.org/10.3321/j.issn:0372-2112.2007.07.023

Cited by

  1. Preliminary study of improved median filter using adaptively mask size in light microscopic image vol.69, pp.1, 2019, https://doi.org/10.1093/jmicro/dfz111
  2. Bayesian Framework-Based Adaptive Hybrid Filtering for Speckle Noise Reduction in Ultrasound Images Via Lion Plus FireFly Algorithm vol.34, pp.6, 2019, https://doi.org/10.1007/s10278-021-00517-3