DOI QR코드

DOI QR Code

Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository

복합 처분환경 모사조건에서의 KURT 화강암의 역학적 물성 변화 평가

  • Park, Seunghun (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Jin-Seop (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Geon Young (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Kwon, Sangki (Dept. of Energy Resource Engineering, Inha University)
  • 박승훈 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 김진섭 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 김건영 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 권상기 (인하대학교 에너지자원공학과)
  • Received : 2019.04.30
  • Accepted : 2019.06.21
  • Published : 2019.07.31

Abstract

The rock properties measured under in-situ geological condition can be used to increase the reliability in numerical simulations with regard to the long-term performance of a high-level waste repository. In this study, the change in mechanical properties of KURT (Korea atomic energy research institute Underground Research Tunnel) granite was evaluated under the simulated THM (Thermo-Hydro-Mechanical) coupled condition due to a deep geological formation in the disposal repository. The rock properties such as uniaxial compression strength, indirect tensile strength, elastic modulus and Poisson's ratio were measured under the coupled test conditions (M, HM, TM, THM). It was found that the mechanical properties of KURT granite is more susceptible to the change in saturation rather than temperature within the test condition of this study. The changes in uniaxial compression strength and indirect tensile strength from the rock samples of dried or saturated conditions showed the maximum relative error of about 20% and 13% respectively under the constant temperature condition. Therefore, it is necessary to use the material properties of rock measured under the coupled THM condition as input parameters for the numerical simulation of long-term performance assessment of a disposal repository

심부 지하환경 조건에서 측정된 암석물성의 사용은 고준위폐기물처분장의 장기 안전성 평가 측면에서 해석의 신뢰성을 향상시킬 수 있다. 본 연구는 지하처분연구시설(Korea atomic energy research institute Underground Research Tunnel, KURT)의 화강암(한국원자력연구원, 대전)을 대상으로 고준위폐기물 처분장에서 예상되는 복합환경 조건을 구현한 후 암석의 역학적 물성 변화를 측정하였다. 실험은 심지층 처분환경이 모사되도록 열-수리-역학적 복합 환경(Thermo-Hydro-Mechanical, THM)이 조절될 수 있는 실험장치를 제작하였다. 다양한 복합 실험조건(M, HM, TM, THM)을 구현하여 일축압축강도와 간접인장강도, 탄성계수, 포와송비 등의 암석물성을 측정한 후 그 결과를 분석하였다. 실험결과, 처분장 근계암반 예상 온도범위 내에서는 KURT 화강암의 역학적 물성이 온도의 영향 보다 포화유무에 따른 변화가 더 큰 것을 확인할 수 있었다. 또한, 동일한 온도 조건에서 포화 유무에 따른 일축압축시험 결과는 최대 약 20%의 상대적인 차이를 보였으며, 간접인장시험 결과는 최대 13%의 차이가 발생하였다. 따라서 처분장의 장기거동에 따른 성능평가 및 안전성 예측을 위해서는 기존의 상온 실내시험을 통해 도출된 암석물성을 사용하기보다 심부 지하환경을 반영한 암석의 복합물성을 활용하는 것이 해석의 신뢰도 향상에 기여할 수 있을 것이다.

Keywords

TNTNB3_2019_v21n4_501_f0001.png 이미지

Fig. 1. THM interactions of rock

TNTNB3_2019_v21n4_501_f0002.png 이미지

Fig. 2. Geological features and KURT of area of collected rock specimen (Lee et al., 2019)

TNTNB3_2019_v21n4_501_f0003.png 이미지

Fig. 3. Specimens for experiment

TNTNB3_2019_v21n4_501_f0004.png 이미지

Fig. 4. Test device for measuring rock strengths

TNTNB3_2019_v21n4_501_f0005.png 이미지

Fig. 5. Layout of Thermo-Hydro-Mechanical test condition

TNTNB3_2019_v21n4_501_f0006.png 이미지

Fig. 6. Analysis results of collected rock specimens

TNTNB3_2019_v21n4_501_f0007.png 이미지

Fig. 7. Stress-stain curve under uniaxial compressive test

TNTNB3_2019_v21n4_501_f0008.png 이미지

Fig. 8. The changes of uniaxial compressive strength, elastic modulus, poisson’s ratio

TNTNB3_2019_v21n4_501_f0009.png 이미지

Fig. 9. Stress-stain curve under indirect tensile test

TNTNB3_2019_v21n4_501_f0010.png 이미지

Fig. 10. The changes of indirect tensile strength, splitting elastic modulus, tensile elastic modulus

TNTNB3_2019_v21n4_501_f0011.png 이미지

Fig. 11. Difference of saturated and dried properties on rock types (modified from Choi et al., 2018)

Table 1. Test conditions of rock specimens

TNTNB3_2019_v21n4_501_t0001.png 이미지

Table 2. The results of density, specific gravity, porosity, water absorption of granite

TNTNB3_2019_v21n4_501_t0002.png 이미지

Table 3. Dynamic rock properties of granite

TNTNB3_2019_v21n4_501_t0003.png 이미지

Table 4. The results of uniaxial compressive strength, elastic modulus, poisson’s ratio of granite

TNTNB3_2019_v21n4_501_t0004.png 이미지

Table 5. Differences in rock properties under various conditions of uniaxial compressive test

TNTNB3_2019_v21n4_501_t0005.png 이미지

Table 6. The results of indirect tensile strength, splitting elastic modulus, tensile elastic modulus of granite

TNTNB3_2019_v21n4_501_t0006.png 이미지

Table 7. Differences in rock properties under various conditions of indirect tensile test

TNTNB3_2019_v21n4_501_t0007.png 이미지

References

  1. Ahrens, B., Duda, M., Renner, J. (2018), "Relations between hydraulic properties and ultrasonic velocities during brittle failure of a low-porosity sandstone in laboratory experiments", Geophysical Journal International, Vol. 212, No. 1, pp. 627-645. https://doi.org/10.1093/gji/ggx419
  2. Atkinson, B.K. (1984), "Subcritical crack growth in geological materials", Journal of Geophysical Research: Solid Earth, Vol. 89, No. B6, pp. 4077-4114. https://doi.org/10.1029/JB089iB06p04077
  3. Cho, H.J., Moon, J.K., Jeong, I.S. (2012), "A study on decreasing behavior of strength & elastic parameters due to water infiltration in rock cores (I)", Journal of the Korean Geotechnical Society, Vol. 28, No. 9, pp. 69-83. https://doi.org/10.7843/kgs.2012.28.9.69
  4. Cho, W.J., Kim, J.S., Kim, G.Y. (2019), "Effects of excavation damaged zone on thermal analysis of multi-layer geological repository", Journal of Nuclear Fuel Cycle and Waste Technology, Vol. 17, No. 1, pp. 75-94. https://doi.org/10.7733/jnfcwt.2019.17.1.75
  5. Choi, S.B., Lee, S.D., Jeon, S.W. (2018), "Experimental study on the change of rock properties due to water saturation", Tunnel and Underground Space, Vol. 28, No. 5, pp. 476-492. https://doi.org/10.7474/TUS.2018.28.5.476
  6. David, C., Menendez, B., Darot, M. (1999), "Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite", International Journal of Rock Mechanics and Mining Sciences, Vol. 36, No. 4, pp. 433-448. https://doi.org/10.1016/S0148-9062(99)00010-8
  7. Heo, J., Lee, J.C., Seo, J.B., Park, S.H., Park, J.C., Kwon, S.K. (2014), "Variation of thermal and mechanical properties of crystalline granite under saturated-loading condition", Tunnel and Underground Space, Vol. 24, No. 3, pp. 224-233. https://doi.org/10.7474/TUS.2014.24.3.224
  8. Hsu, S.C., Nelson, P.P. (1993), "Characterization of cretaceous clay-shales in North America", Geotechnical Engineering of Hard Soils-Soft Rocks, Vol. 1, pp.139-146.
  9. Huang, Y.H., Yang, S.Q., Tina, W.L., Zhao, J., Ma, D., Zhang, C.S. (2017), "Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment", Archives of Civil and Mechanical Engineering, Vol. 17, No. 4, pp. 912-925. https://doi.org/10.1016/j.acme.2017.03.007
  10. IAEA (1981), Recommendations on underground disposal of radioactive wastes, Basic Guidance, Safety Series 54.
  11. Inada, Y., Kinoshita, N., Ebisawa, A., Gomi, S. (1997), "Strength and deformation characteristics of rocks after undergoing thermal hysteresis of high and low temperatures", International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 3-4, pp. 140.e1-140.e14. https://doi.org/10.1016/S1365-1609(97)00048-8
  12. ISRM (2007), The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006, ISRM Commission on Testing Methods.
  13. Jianhong, Y., Wu, F.Q., Sun, J.Z. (2009), "Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads", International Journal of Rock Mechanics and Mining Sciences, Vol. 46, No. 3, pp. 568-576. https://doi.org/10.1016/j.ijrmms.2008.08.004
  14. Kim, G.Y., Kim, S.J., Koh, Y.K., Bae, D.S. (2004), "Mineralogical characteristics and genesis of phlogopite in the talc deposits of the Chungnam area, Korea", Journal of the Mineralogical Society of Korea, Vol. 17. No. 3, pp. 221-233.
  15. Kitamura, K., Takahashi, M., Mizoguchi, K., Masuda, K., Ito, H., Song, S.R. (2010), "Effects of pressure on pore characteristics and permeability of porous rocks as estimated from seismic wave velocities in cores from TCDP Hole-A", Geophysical Journal International, Vol. 182, No. 3, pp. 1148-1160. https://doi.org/10.1111/j.1365-246X.2010.04694.x
  16. Lee, C.S., Kwon, S.K., Choi, J.W., Jeon, S.W. (2011), "An estimation of the excavation damaged zone at the KAERI underground research tunnel", Tunnel and Underground Space, Vol. 21, No. 5, pp. 359-369. https://doi.org/10.7474/TUS.2011.21.5.359
  17. Lee, C.S., Yoon, S., Cho, W.J., Jo, Y.G., Lee, S.D., Jeon, S.W., Kim, G.Y. (2019), "Study on thermal, hydraulic, and mechanical properties of KURT granite and Gyeongju bentonite", Journal of Nuclear Fuel Cycle and Waste Technology, Vol. 17, No. S, pp. 65-80. https://doi.org/10.7733/jnfcwt.2019.17.S.65
  18. Lee, H.K., Kim, Y.G., Lee, H.S. (1998), "A study on characteristics of jointed rock masses and thermo-hydro-mechanical behavior of rock mass under high temperature", Tunnel and Underground Space, Vol. 8, No. 3, pp. 184-193.
  19. Ozcelik, Y., Ozguven, A. (2014), "Water absorption and drying features of different natural building stones", Construction and Building Materials, Vol. 63, No. 3, pp. 257-270. https://doi.org/10.1016/j.conbuildmat.2014.04.030
  20. Park, H.I., Lee, J.D., Jung, J.I. (1977), Manuscript of drawing paper on Yoosung of Korea geological map, Korea Institute of Geoscience and Mineral Resources, Daejeon, pp. 21.
  21. Park, S.H., Heo, J., Lee, J.H., Park, J.C., Kwon, S.K. (2015), "An evaluation of the influence of the rock property change under saturated-loading conditions on rock stability", Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol. 52, No. 3, pp. 309-321. https://doi.org/10.12972/ksmer.2015.52.3.309
  22. Park, S.H., Kim, J.S., Kwon, S.K. (2018), "Investigation of the development of an excavation damaged zone and its influence on the mechanical behaviors of a blasted tunnel", Geosystem Engineering, Vol. 21, No. 3, pp. 165-181. https://doi.org/10.1080/12269328.2018.1461139
  23. Torok, A., Torok, A. (2015), "The effect of temperature on the strength of two different granites", Central European Geology, Vol. 58, No. 4, pp. 356-369. https://doi.org/10.1556/24.58.2015.4.5
  24. Torok, A., Vasarhelyi, B. (2010), "The influence of fabric and water content on selected rock mechanical parameter of travertine, examples from Hungray", Engineering Geology, Vol. 115, No. 3-4, pp. 237-245. https://doi.org/10.1016/j.enggeo.2010.01.005
  25. Yoon, Y.K., Baek, Y.J., Jo, Y.D. (2011), "Effects of temperature and water pressure on the material properties of granite & limestone from Gagok mine", Tunnel and Underground Space, Vol. 21, No. 1, pp. 33-40. https://doi.org/10.7474/TUS.2011.21.1.033
  26. Zhao, Y., Wan, Z., Feng, Z., Yang, D., Zhang, Y., Qu, F. (2012), "Triaxial compression system for rock testing under high temperature and high pressure", International Journal of Rock Mechanics and Mining Sciences, Vol. 52, pp. 132-138. https://doi.org/10.1016/j.ijrmms.2012.02.011
  27. Zhou, Z., Cai, X., Zhao, Y., Chen, L., Xiong, C., Li, X. (2016), "Strength characteristics of dry and saturated rock at different strain rates", Transactions of Nonferrous Metals Society of China, Vol. 26, No. 7, pp. 1919-1925. https://doi.org/10.1016/S1003-6326(16)64314-5