DOI QR코드

DOI QR Code

A tool development for forced striation and delineation of river network from digital elevation model based on ModelBuilder

모델빌더 기반 하천망의 DEM 각인 및 추출 툴 개발

  • Choi, Seungsoo (Department of Water and Sewage, Dongmyung Engineering) ;
  • Kim, Dongsu (Department of Civil & Environmental Engineering, Dankook University) ;
  • You, Hojun (Department of Civil & Environmental Engineering, Dankook University)
  • Received : 2018.04.19
  • Accepted : 2019.07.24
  • Published : 2019.08.31

Abstract

Geospatial information for river network and watershed boundary have played a fundamental roles in terms of river management, planning and design, hydrological and hydraulic analysis. Irrespective of their importance, the lack of punctual update and improper maintenance in currently available river-related geospatial information systems has revealed inconsistency issues between individual systems and spatial inaccuracy with regard to reflecting dynamically transferring riverine geography. Given that digital elevation models (DEMs) of high spatial resolution enabling to reproduce precise river network are only available adjacent to national rivers, DEMs with poor spatial resolution lead to generate unreliable river network information and thereby reduce their extensible applicabilities. This study first of all evaluated published spatial information available in Korea with respect to their spatial accuracy and consistency, and also provides a methodology and tool to modify existing low resolution of DEMs by means of striation of conventional or digitized river network to replicate input river network in various degree of further delineation. The tool named FSND was designed to be operated in ArcGIS ModelBuilder which ensures to automatically simulate river network striation to DEMs and delineation with different flow accumulation threshold. The FNSD was successfully validated in Seom River basin to identify its replication of given river network manually digitized based on recent aerial photograph in conjunction with a DEM with 30 meter spatial resolution. With the derived accuracy of reproducibility, substantiation of a various order of river network and watershed boundary from the striated DEM posed tangible possibility for highly extending DEMs with low resolution to be capable of producing reliable riverine spatial information subsequently.

하천망과 유역 등 하천 네트워크 관련 공간자료는 각종 하천관리, 하천계획 및 설계, 수리수문학적 해석 등의 근간을 이루는 기초자료로 활용되고 있다. 기존 RIMGIS 등에서 제공하는 하천정보도 현행화 및 적절한 관리 부족으로 공간정보시스템간 불일치와 실제 하천지형과 이격이 나타나고 있는 실정이다. 또한, 고해상도 수치지형도(DEM)이 국가하천 주변 등 일부 지역에서만 제공되어, 저해상도 DEM으로부터 추출된 하천네트워크 정보의 신뢰도가 낮고 가용한 기수립 하천네트워크 정보와의 불일치는 DEM 기반 다양한 하천정보 추출 및 탄력적 활용을 저하시키고 있는 실정이다. 본 연구에서는 우선 국내 하천공간정보시스템이 제공하는 하천망 정보의 공간정확도, 정보체계간 일치성 등을 평가하고, 낮은 해상도의 DEM에 기수립된 하천망을 DEM에 강제로 각인시키는 방법으로 DEM을 개선하여 추후 하천망 혹은 유역 추출 시 기수립 하천망 혹은 유역대로 재현이 가능하게 하여 하천분야에 DEM의 활용성을 높일 수 있는 방법론과 소프트웨어(Forced river Network Striation and Delineation tool: FNSD)을 개발하고자 하였다. 개발된 FNSD는 ArcGIS의 ModelBuilder에서 순차적으로 관련 모듈을 연계시켜 자동화되도록 설계되었고, 한강수계의 섬강 유역에 시범 적용되었으며 항공사진 정보를 기반으로 수작업을 통해 도출된 하천망을 기수립 하천망으로 간주하여 30 m 저해상도 DEM에 각인시켜 하천망을 재추출한 후 주어진 기수립 하천망과 비교하여 재현 정확도를 검토하였다. 섬강유역에 적용한 결과 FNSD는 기수립 하천망을 정확하게 재현할 수 있음을 확인하였다. 이러한 검증결과는 각인된 DEM이 다양한 차수의 하천망 및 유역을 신뢰성 있게 재현할 수 있어 저해상도 DEM의 하천활용도를 높이는데 기여할 가능성이 있음을 의미한다.

Keywords

References

  1. Allen, D. W. (2011). Getting to know ArcGIS ModelBuilder. ESRI Press, 1st Edition, ESRI, USA.
  2. BIZ-GIS (2006). BIZ-GIS, accessed 1 July 2019, .
  3. Chae, J. H., Jung, I. J., and Kim, S. Y. (2003). "The study of water quality management in river using GIS." Proceedings Korean Society Civil Engineering Conference, KSCE, pp. 2463-2466.
  4. Choi, C., Choi, Y., and Kim, K. (2013). "Analysis of flood inundation using LiDAR and LISFLOOD model." Journal of the Korean Association of Geographic Information Studies, Vol. 16, No. 4, pp.1-15. https://doi.org/10.11108/kagis.2013.16.4.001
  5. Choi, S., Kim, D., and You, H. (2017). FNSD Software Release, accessed 1 July 2019, .
  6. Djokic, D., Ye, Z., and Dartiguenave, C. (2011). Arc hydro tools overview, version 2.0. ESRI, 380 New York Street, Redlands, CA 92373, USA.
  7. Hwang, E., and Jung, K. (2012). "Development of erosion fractal-based interpolation method of river morphology." Journal of Korea Water Resources Association, Vol. 45, No. 9, pp. 943-957. https://doi.org/10.3741/JKWRA.2012.45.9.943
  8. Jo, M., Kim, K., and Kim, H. (2012). "Development of a river maintenance management technology related with national river management data." The Korean Association of Geographic Information Studies, Vol. 15, No. 1, pp. 159-171. https://doi.org/10.11108/kagis.2012.15.1.159
  9. Jung, Y., Yeo, K., Kim, S., and Lee, S. (2013). "The effect of uncertainty in roughness and discharge on flood inundation mapping." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 3, pp. 937-945. https://doi.org/10.12652/Ksce.2013.33.3.937
  10. Jung., I. K., and Kim, S. J. (2003). "Comparison of DEM preprocessing method for efficient watershed and stream network extraction." Journal of Korean Society of Civil Engineers, KSCE, Vol. 23, pp. 393-400.
  11. Kim, D. M. (2008). "Preprocessing methods and analysis of grid size for watershed extraction." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 26, No.1, pp. 41-50.
  12. Kim, H., Cho, H., and Jung, H. (2016b). "Master plan establishment for flood prediction oriented for people lives." Magazine of Korea Water Resources Association, Vol. 49, No. 7, pp. 7-16.
  13. Kim, T., Seo, K., Kim, D., and Kim, S. (2016a). "Enhancement of digital elevation models for improved estimation of small stream flood inundation mapping." Journal of Environmental Science International, Vol. 25, No. 8, pp. 1165-1176. https://doi.org/10.5322/JESI.2016.25.8.1165
  14. Kum, D., Choi, J., Kim, I., Dong, D., Ryu, J., Kang, H., and Lim, K. (2011). "Development of automatic extraction model of soil erosion management area using ArcGIS model builder." Journal of the Korean Society of Agricultural Engieers, Vol. 53, No. 1, pp. 71-81. https://doi.org/10.5389/KSAE.2011.53.1.071
  15. Kwon, M. J., Kim, K. H., and Lee, C. Y. (2012). "Design of GIS based korean reach file supporting water quality modeling." Journal of Korea Water Resource Association, Vol. 45, No. 1, pp. 1-13. https://doi.org/10.3741/JKWRA.2012.45.1.1
  16. Lee, C. (2013). Analysis of change in river morphology and vegetation due to artificial structures. KICT Report 2013-221.
  17. Lee, J. H., Han, S. H., Yu, K. H., Kim, Y. I., and Lee, B. K. (2005). "Automatic generation of DEM using LIDAR data." Journal of Korean Society for Geospatial Information Science, KSIS, Vol. 13, No. 4, pp. 27-32.
  18. Maidment, D. R. (2002). Arc Hydro: GIS for water resources. ESRI, Inc.
  19. McKay, L., Bondelid, T., Dewald, T., Johnston, J., Moore, R., and Rea, A. (2012). NHDPlus version 2: user guide. National Operational Hydrologic Remote Sensing Center, Washington, DC. pp. 77-81.
  20. Ministry of Land, Infrastructure and Transport (2012). Republic of Korea, accessed 1 July 2019, .
  21. Park, K., and Kim, S. (2011). "A study of make inundation map using satellite photograph at urban river." Journal of the Environmental Science International, Vol. 20, No. 2, pp. 199-205. https://doi.org/10.5322/JES.2011.20.2.199
  22. Park, Y. G., Kim, K. H., and You, J. H. (2017). "GIS based development of module and algorithm for automatic catchment delineation using Korean reach file." Journal of the Korean Association of Geographic Information Studies, Vol. 20, No. 4, pp. 126-138. https://doi.org/10.11108/KAGIS.2017.20.4.126
  23. Tarboton, D. G., and Ames, D. P. (2001). "Advances in the mapping of flow networks." Bridging the Gap: Meeting the Worlds Water and Evnronmental Resources Challenges, pp. 1-10.
  24. US Geological Survey (USGS) (2003). United States of America, accessed 1 July 2019, .
  25. US Geological Survey (USGS) (2006). United States of America, accessed 1 July 2019, .
  26. Whiteaker, T., Robayo, O., Maidment, D., and Obenour, D. (2006). "From a NEXRAD rainfall map to a flood inundation map." Journal of Hydrologic Engineering, Vol. 11, No. 1, pp. 37-45. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(37)
  27. Yeo, H., Choi, S., and Yeu, Y. (2016). "An improvement of efficiently establishing topographic data for small river using UAV." Journal of Korean Society for Geospatial Information System, Vol. 24, No. 1, pp. 3-8. https://doi.org/10.7319/KOGSIS.2016.24.1.003