DOI QR코드

DOI QR Code

History and Future Direction for the Development of Rice Growth Models in Korea

벼 작물생육모형 국내 도입 활용과 앞으로의 연구 방향

  • Kim, Junhwan (Division of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Sang, Wangyu (Division of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Pyeong (Division of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Jaekyeong (Division of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Chongil (Division of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Myungchul (Division of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration)
  • 김준환 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 상완규 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 신평 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 백재경 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 조정일 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 서명철 (농촌진흥청 국립식량과학원 작물재배생리과)
  • Received : 2019.09.16
  • Accepted : 2019.09.27
  • Published : 2019.09.30

Abstract

A process-oriented crop growth model can simulate the biophysical process of rice under diverse environmental and management conditions, which would make it more versatile than an empirical crop model. In the present study, we examined chronology and background of the development of the rice growth models in Korea, which would provide insights on the needs for improvement of the models. The rice crop growth models were introduced in Korea in the late 80s. Until 2000s, these crop models have been used to simulate the yield in a specific area in Korea. Since then, improvement of crop growth models has been made to take into account biological characteristics of rice growth and development in more detail. Still, the use of the crop growth models has been limited to the assessment of climate change impact on crop production. Efforts have been made to apply the crop growth model, e.g., the CERES-Rice model, to develop decision support system for crop management at a farm level. However, the decision support system based on a crop growth model was attractive to a small number of stakeholders most likely due to scarcity of on-site weather data and reliable parameter sets for cultivars grown in Korea. The wide use of the crop growth models would be facilitated by approaches to extend spatial availability of reliable weather data, which could be either measured on-site or estimates using spatial interpolation. New approaches for calibration of cultivar parameters for new cultivars would also help lower hurdles to crop growth models.

작물 생육모형은 기존의 경험적 작물모형과는 달리 벼의 생장과정을 모의 할 수 있는 장점이 있다. 이러한 작물생육 모형들은 80년대 후반부터 적극적으로 국내도입이 이루어 졌다. 유럽에서 개발된 MACROS로 부터 시작하여 이후 Oryza1 및 Oryza2000 모형과 북미에서 개발된 DSSAT 계열의 모형인 CERES-RICE 모형을 도입하게 되었다. 각각의 모형들은 최초에는 단순히 품종수 적합 후 특정지역에의 수량을 모의하는데 활용되었으나 2000년대에 이르러서는 국내에 적합한 작물모형으로 발전시킬 수 있는 단계에 이르게 되었다. 그러나, 작물생육모형을 기후변화 영향평가를 위한 용도로 주로 사용하였고 실용적인 수준에서의 활용은 미미하였다. 일부 농가 적용을 위한 시도가 있었으나 널리 활용되지는 못하였다. 이러한 활용상의 문제점은 기상자료의 공간해상도가 문제가 가장 크며, 그 다음으로는 각 지역별이 품종에 대한 품종모수 자료가 부족하기 때문이다. 이러한 활용상의 문제점을 극복하기 위해서는 기상관측의 공간해상력을 높이기 위한 관측소의 확대 또는 공간 내삽법이 필요할 것으로 생각된다. 또한 신품종이 일정 재배면적 이상 확대될 경우 이에 대해 품종모수를 적합할 제도적 기술적 방법이 필요하다. 작물모형의 활용 확대를 위해서는 기상 또는 토양 분야와도 연결이 필요하다. 이를 위해서는 군락의 증산 속도와 토양모형에 정보가 필요하며 이는 군락 광합성 관련 부분과 토양 특성에 대해서 새로운 접근이 필요함을 의미한다.

Keywords

References

  1. 농업기술연구소, 1989: 벼군락내 미세기상환경과 물질생산 모형 연구. 81-96.
  2. 농촌진흥청, 2002: 벼농사 정밀 재배관리 전문가 시스템 개발.
  3. 농촌진흥청, 2016: 2015년도 하계작물 신품종개발공동연구 보고서.
  4. 작물시험장, 1989: 벼 생육 및 수량 진단 모형 개발. 596-605, 818-823, 860-861.
  5. 작물시험장, 1990: 벼 생육 및 수량 진단 모형 개발. 540-550.
  6. 작물시험장, 1991: 벼 생육 및 수량 진단 모형 개발 746-747.
  7. 한석호, 이병훈, 박미성, 승준호, 양현석, 시성철, 2011: 기상요인을 고려한 단순예측 모형 개발 연구, 정책연구보고서 P152, 한국농촌경제연구원.
  8. Basso, B., D. Cammarano, and E. Carfagna, 2013: Review of crop yield forecasting methods and early warning systems. In Proceedings of the first meeting of the scientific advisory committee of the global strategy to improve agricultural and rural statistics, FAO Headquaters, Rome, Italy, 18-19.
  9. Bouman, B. M., H. van Keulen, H. H. van Laar, and R. Rabbinge 1996: The 'School of de Wit' crop growth simulation models: A pedigree and historical overview. Agricultural Systems 52, 171-198. https://doi.org/10.1016/0308-521X(96)00011-X
  10. Bouman, B. M. J. Kropff, T. P. Tung, M. Woperesis, H. ten Berge, and H. H. van Laar, 2001: Oryza2000: Modeling lowland rice. IRRI, Manilla, Philippines.
  11. Cho, K. S., and J. Yun, 1999: Regional crop evaluation and yield forecast of paddy rice based on daily weather observation. Korean Journal of Agriculture and Forest Meteorology 1(1), 12-19.
  12. Chung, U., K. S. Cho, and B. Lee, 2006: Evaluation of site-specific potential for rice production in Korea under the changing climate. Korean Journal of Agriculture and Forest Meteorology 8(4), 229-241.
  13. Dingkuhn, M., 2017: Crop-model assisted phenomics and genome-wide association study for climate adaptation of indica rice. 2. Thermal stress and spikelet sterility. Journal of Experimental Botany 68(15), 4389-4406. https://doi.org/10.1093/jxb/erx250
  14. Godwin, D., U. Singh, J. T. Ritchie, and E. C. Alcocija, 1992: A user guide to CERES-RICE, International Fertilizer Development Center, Muscle Shoals, AL, USA.
  15. Horie, T., 1993: Predicting the effects of climatic variation and elevated CO2 on rice yield in Japan. Journal of Agricultural Meteorology 48(5), 567-574. https://doi.org/10.2480/agrmet.48.567
  16. Hyun, S., and K. S. Kim, 2017: Estimating of heading date for rice cultivars using Oryza(V3). Korean Journal of Agriculture and Forest Meteorology 19, 246-251.
  17. Hyun, S., and K. S. Kim, 2019: Calibration of cultivar parameters for cv. Shindongjin for a rice growth model using the observation data in a low quality. Korean Journal of Agriculture and Forest Meteorology 21, 42-54.
  18. Jame, Y. W., and H. W. Cutforth, 1996: Crop growth models for decision support systems. Canadian Journal of Plant Science 76, 9-19. https://doi.org/10.4141/cjps96-003
  19. Jeong, H., C. Kim, and D. Moon, 2013: Impact of abnormal weather factors on rice production. Climate Change Research 4, 317-330.
  20. Jeong, J. H., J. P. Resop, N. D. Mueller, D. H. Fleisher, K. Yun, E. E. Butler, D. J. Timlin, K. M. Shim, J. S. Gerber, V. R. Reddy, and S. H. Kim, 2016: Random forests for global and regional crop yield predictions. PLoS One 11(6):e0156571. doi:10.1371/journal.pone.0156571.
  21. Jones, J. W., J. M.Antle, B. Basso, K. J.Boote, R. T.Conant, I. Foster, H. C. J. Godfray, M. Herrero, R. E. Howitt, S. Janssen, B. A. Keating, R. lMunoz-Carpena, C. H. Porter, C. Rosenzweig, T. R.Wheeler, 2017: Brief history of agricultural systems modeling. Agricultural Systems 155, 240-254. https://doi.org/10.1016/j.agsy.2016.05.014
  22. Kim, D., S. Kim, K. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP 8.5 climate condition. Korean Journal of Agriculture and Forest Meteorology 14(3), 132-141. https://doi.org/10.5532/KJAFM.2012.14.3.132
  23. Kim, H., J. Ko, S. Kang, and J. Tenhunen, 2013: Impact of climate change on paddy rice yield in a temperate climate. Global Change Biology 19, 548-562. https://doi.org/10.1111/gcb.12047
  24. Kim, J., W. Sang, H. Shin, H. Cho, M. Seo, B. Yoo, and K. Kim, 2015: Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. Journal of Crop Science and Biotechnology 18, 257-264. https://doi.org/10.1007/s12892-015-0103-z
  25. Kim, J., C. K. Lee, W. Sang, H. Shin, H. Cho, and M. Seo, 2017a: Introduction to empirical approach to estimate rice yield and comparison with remote sensing approach. Korean Journal of Remote Sensing 33, 737- 740. https://doi.org/10.7780/kjrs.2017.33.5.2.12
  26. Kim, J., W. Sang, H. Shin, H. Cho, and M. Seo, 2017b: A meteorological analysis on high rice yield in 2015 in South Korea. Korean Journal of Agriculture and Forest Meteorology 19, 54-61.
  27. Kim, S. K., H. J. Lee, H. S. Lee, B. Mun, and S. G. Lee, 2017c: Effect of soil water content on growth, photosynthetic rate, and stomatal conductance of Kimchi Cabbage at the early growth stage after Transplanting. Protected Horticulture and Plant Factory 26, 151-157. https://doi.org/10.12791/KSBEC.2017.26.3.151
  28. Kim, J., W. Sang, H. Shin, H. Cho, and M. Seo, 2018a: Calibration of crop growth model CERES-MAIZE with yield trial data. Korean Journal of Agriculture and Forest Meteorology 20, 227-283.
  29. Kim, K. S., S.-O. Kim, J. H. Kim, K. H. Moon, J. H. Shin, and J. Cho, 2018b: Development and application of crop models in Korea. Korean Journal of Agriculture and Forest Meteorology 20, 145-148.
  30. Kim, J., J. Lee, W. Sang, H. Shin, H. Cho, and M. Seo, 2019: Rice yield prediction in South Korea by using random forest. Korean Journal of Agriculture and Forest Meteorology 21, 75-84.
  31. Kropff, M. J., H. H. van Laar, and R. B. Matthews, 1995: The Oryza1 model for potential production of rice.
  32. Lee, C. K., J. Kim, J. Shon, W. Yang, Y. Yoon, K. Choi, and K. Kim, 2012: Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agriculture and forest Meteorology 14, 207-221. https://doi.org/10.5532/KJAFM.2012.14.4.207
  33. Lee, C. K., K. S. Kwak, J. H. Kim, J. H. Shon, and W. H. Yang, 2011: Impacts of climate change and follow-up cropping season shift on growing period and growing temperature in different rice maturity types. Korean Journal of Crop Science 56, 223-243.
  34. Lim, J. T., J. I. Yun, and B. S. Kwon, 1997: Change in potential productivity of rice around lake Juam due to construction of dam by SIMRIW. Korean Journal of Crop Science 46(2), 729-738.
  35. Moon, K. H., E. Y. Song, S. H. Wi, and S. Oh, 2018: Development of a Chinese cabbage model using Microsoft Excel/VBA. Korean Journal of Agriculture and forest Meteorology 20, 228-232.
  36. Nguyen, D., K. Lee, D. Kim, N. T. Anh, and B. Lee, 2014: Modeling and validation of high-temperature induced spikelets sterility in rice. Field crop research 156, 293-302. https://doi.org/10.1016/j.fcr.2013.11.009
  37. Penning de Vries, F. W. T., D. M. Jansen, H. H. M. ten Berge, and A. H. Bakema, 1988: Simulation of ecophysiological processes in growth of several annual crops. The international Rice Research Institute.
  38. Park, D., R. Cui, and B. Lee, 2002: Relationship of spikelets number with nitrogen content, biomass and nonstructural carbohydrate accumulation during reproductive stage of rice. Korean Journal of Crop Science 47, 486-491.
  39. Peart, R. M., and W. D. Shoup, 2018: Agricultural Systems Modeling and Simulation. CRC press.
  40. Sang, W., J. Kim, P. Shin, H. Cho, M. C Seo, and G. Lee, 2017: A study on grain yield response and limitations of CERES-Barley model according to soil types. Korean Journal of Soil Science and Fertilizer 50, 509-519. https://doi.org/10.7745/KJSSF.2017.50.6.509
  41. Shin, J. C., and M. H. Lee, 1995: Rice production in South Korea under current and future climates. Modeling the impact of climate change on rice production in ASIA. Cab international, UK, 199-214.
  42. Yun, J., 1990: Analysis of the climatic impact on Korean rice production under the carbon dioxide scenario, Asia-Pacific Journal of Atmospheric Sciences 26(4), 263-742.
  43. Yun, J., 2003: Prediction regional rice production in South Korea using spatial data and crop-growth modeling. Agricultural Systems 77, 23-38. https://doi.org/10.1016/S0308-521X(02)00084-7