DOI QR코드

DOI QR Code

Evaluation of Limestone for In-Situ Desulfurization in CFB Boilers

순환유동층 보일러 로내 탈황을 위한 석회석 평가

  • 이시훈 (전북대학교 자원에너지공학과) ;
  • 김동원 (한국전력연구원 발전기술연구원) ;
  • 이종민 (한국전력연구원 발전기술연구원) ;
  • 배용채 (한국전력연구원 발전기술연구원)
  • Received : 2019.07.29
  • Accepted : 2019.08.28
  • Published : 2019.12.01

Abstract

In order to meet more severe environmental regulations, oxy-fuel circulating fluidized bed(CFB) boilers or ultra supercritical CFB boilers, which are a kind of process in that solid particles moves similar to fluid, have been developed in the world. In CFB power generation processes, the method to reduce or remove sulfur dioxide is in-situ desulfurization reaction via limestone directly injected into CFB boilers. However, the desulfurization efficiencies have continuously changed because limestones injected into CFB boilers are affected by various operation conditions (Bed temperature, pressure, solid circulating rate, solid holdup, residence time, and so on). In this study, a prediction method with physical and chemical properties of limestone and operation conditions of CFB boiler for in-situ desulfurization reaction in CFB boilers has developed by integrating desulfurization kinetic equations and hydrodynamics equations for CFB previously published. In particular, the prediction equation for in-situ desulfurization was modified by using experimental results from desulfurization reactions of various domestic limestones.

나날이 엄격해지는 환경 규제를 만족시키기 위하여, 고체 입자를 유체처럼 이용하는 순산소 순환유동층 및 초초임계 순환유동층 발전 기술이 전세계에서 개발되고 있다. 순환유동층 발전 공정들에서 미세먼지, 산성비의 주범으로 알려진 황산화물을 저감하는 전통적인 방법은 황산화물과 반응하는 석회석을 보일러 내에 직접 주입하는 것이다. 그러나 보일러 내에 주입된 석회석은 다양한 조업 변수들(온도, 압력, 고체 순환속도, 층밀도, 체류시간 등)의 영향을 받아 탈황 성능이 지속적으로 변화하게 된다. 이에 본 연구에서는 기존에 발표된 탈황 반응 속도식과 순환유동층의 수력학적 특성식들을 결합하여 순환유동층 보일러에서 석회석과 순환유동층 운전 특성들만으로 탈황 효율을 예측하는 식을 개발하였다. 특히 다양한 국내 석회석들의 탈황 반응들로부터 얻어진 실험 결과들을 이용하여 탈황 효율 예측식을 개선하였다.

Keywords

References

  1. Lee, S. H., Lee, T. H., Jung, S. M. and Lee, J. M., "Economic Analysis of a 600 mwe Ultra Supercritical Circulating Fluidized Power Plant Based on Coal Tax and Biomass co-combustion Plans," Renew. Energy, 138, 121-127(2019). https://doi.org/10.1016/j.renene.2019.01.074
  2. Gwak, Y. R., Kim, Y. B., Gwak, I. S. and Lee, S. H., "Economic Evaluation of Synthetic Ethanol Production by Using Domestic Biowastes and Coal Mixture," Fuel, 213, 115-122(2018). https://doi.org/10.1016/j.fuel.2017.10.101
  3. Shin, J. H., Lee, L. S. and Lee, S. H., "Economic Assessment of a Indirect Liquefaction Process Using a Gasification with Petroleum Coke/coal Mixtures," Korean Chem. Eng. Res., 54, 501-509(2016). https://doi.org/10.9713/kcer.2016.54.4.501
  4. Lee, D. Y., Ryu, H. J., Shun, D. W., Bae, D. H. and Baek, J. I., "Effect of Solid Residence Time on $CO_2$ Selectivity in a Semi-continuous Chemical Looping Combustor," Korean J. Chem. Eng., 35(6), 1257-1262(2018). https://doi.org/10.1007/s11814-018-0042-8
  5. Kook, J. W., Gwak, I. S., Gwak, Y. R., Seo, M. W. and Lee, S. H., "A Reaction Kinetic Study of $CO_2$ Gasification of PetroLeum Coke, Coals and Mixture," Korean J. Chem. Eng., 34(12), 3092-3101(2017). https://doi.org/10.1007/s11814-017-0214-y
  6. Kim, Y. B., Gwak, Y. R., Keel, S. I., Yun, J. H., Lee, S. H., "Direct Desulfurization of Limestones Under Oxy-circulating Fluidized Bed Combustion Conditions," Chem. Eng. J., http://doi.org/10.1016/j.cej.2018.08.036.
  7. Lee, J. R., Hasolli, N., Jeon, S. M., Lee, K. S., Kim, K. D., Kim, Y. H., Lee, K. Y. and Park, Y. O., "Optimization Fluidization Characteristics Conditions of Nickel Oxide for Hydrogen Reduction by Fluidized Bed Reactor," Korean J. Chem. Eng., 35(11), 2321-2326(2018). https://doi.org/10.1007/s11814-018-0137-2
  8. Lee, J. W., Chung, S. W., Ryu, S. O., Lee, J. E., Yun, Y. S., Lee, C., Kim, Y. J. and Lim, S. K., "Pneumatic Transport Characteristics of Coarse Size Pulverized Coal for the Application of Fast Circulating Fluidized Bed Gasification," Korean J. Chem. Eng., 34(1), 54-61(2017). https://doi.org/10.1007/s11814-016-0237-9
  9. Salehi-Asl, M., Azhgan, S. and Movahedirad, S., "Some General Aspects of a Gas-solid Fluidized Bed Using Digital Image Analysis," Korean J. Chem. Eng., 35(2), 613-620(2018). https://doi.org/10.1007/s11814-017-0291-y
  10. Basu, P., "Circulating Fluidized Bed Boilers," Springer, Switzerland(2015).
  11. Park, J. M., Keel, S. I., Yun, J. H., Yun, J. H. and Lee, S. S., "Thermogravimetric Study for the co-combustion of Coal and Dried Sewage Sludge," Korean J. Chem. Eng., 34(8), 2204-2210(2017). https://doi.org/10.1007/s11814-017-0129-7
  12. Won, T. S., Jeong, A. R., Choi, J. H., Jo, S. H., Ryu, H. J., Yi, C. K., "Temperature Effects on Riser Pressure Drop in a Circulating Fluidized Bed," Korean J. Chem. Eng., 34, 913-920(2017). https://doi.org/10.1007/s11814-016-0289-x
  13. Shun, D. W., Shin, J. S., Bae, D. H., Ryu, H. J. and Park, J. H., "A Comparison of Fluidized Bed Pyrolysis of Oil Sand from Utah, USA and Alberta, Canada," Korean J. Chem. Eng., 34, 3125-3131 (2017). https://doi.org/10.1007/s11814-017-0233-8
  14. Jeong, S. H., Lee, K. S., Keel, S. I., Yun, J. H., Kim, Y. J., Kim, S. S., "Mechanisms of Direct and in-direct Sulfation of Limestone," Fuel, 161, 1-11(2015). https://doi.org/10.1016/j.fuel.2015.08.034
  15. Abanades, J. C., Anthony, E. J., Garcia-Labiano, F. and Jia, L., "Progress of Sulfation in Highly Sulfated Particles of Lime," Ind. Eng. Chem. Res., 42, 1840-1844(2003). https://doi.org/10.1021/ie020868t
  16. Wang, H., Guo, S., Yang, L., Wei, X., Zhang, S. and Wu, S., "Impacts of Water Vapor and AAEMs on Limestone Desulfurization During Coal Combustion in a Bench-scale Fluidized-bed Combustor," Fuel. Processing. Technology., 155, 134-143(2017). https://doi.org/10.1016/j.fuproc.2016.05.010
  17. Shin, J. H., Kim, Y. R., Kook, J. W., Kwak, I. S., Park, K. I., Lee, J. M. and Lee, S. H., "Desulfurization Characteristics of Domestic Limestones Through Simultaneous Calcination and Desulfurization Reaction," Appl. Chem. Eng., 26(5), 557-562(2015). https://doi.org/10.14478/ace.2015.1071
  18. Wang, L., Li, S., G. Eddings, E., "Fundamental Study of Indirect vs Direct Sulfation Under Fluidized Bed Conditions," Ind. Eng. Chem. Res., 54, 3548-3555(2015). https://doi.org/10.1021/ie504774r
  19. Kochel, A., Cieplinska, A. and Szymanek, A., "Flue Gas Desulfurization in Oxygen-enriched Atmospheres Using Modified Limestone Sorbents," Energy fuels, 29, 331-336(2015). https://doi.org/10.1021/ef5021439
  20. Wang, C., Chen, L., Jia, L. and T. Y., "Simultaneous Calcination and Sulfation of Limestone in CFBB," Appl. Energy, 155, 478-484 (2015). https://doi.org/10.1016/j.apenergy.2015.05.070
  21. Seo, J. H., Baek, C. S., Kwon, W. T., Cho, K. H., Ahn, J. W., "Influence of Physicochemical Characteristic of Donghae-Sam-Cheok Limestones on the Performance of Flue Gas Desulfurization," J. of Korean Inst. Resour. Recycl., 24(6), 38-44(2015). https://doi.org/10.7844/kirr.2015.24.6.38
  22. Lee, D. H., Hodges, J. L. and Georgakis, C., "Modeling of $SO_2$ Emission from Fluidized Coal Combustors," Chem. Eng. Sci., 35, 302-306(1980). https://doi.org/10.1016/0009-2509(80)80100-X
  23. Fee, D. C., Wilson, W. I., Myles, K. M., Johnson, I., Fan, L. S., "Fludized Bed Coal Combustion in Bed Sorbent Sulfation Model," Chem. Eng. Sci., 38, 1917-1925(1983). https://doi.org/10.1016/0009-2509(83)85048-9
  24. Hamer, C. A., "Evaluation of $SO_2$ Sorbent Utilization in Fluidized Beds," Energy Mines and Resources, CANMET Report 86-9E, Canada(1986).
  25. Bolton, L. W. and Davidson, J. F., "Recirculation of Particles in a Fast Fluidized Bed Risers," In P. Basu, J. F. Large (Eds.), Circulating fluidized bed technology II (pp. 139-146), Oxford: Pergarmon Press (1988).
  26. Naruse, I., Kim, H., Lu, G., Yuan, J. and Ohtake, K., "Study on Characteristics of Self-desulfurization and Self-denitrification in Biobriquette Combustion," Symposium (International). on. Combustion., 27, 2973-2979(1998).
  27. Al-makhadmeh, L. A., Maier, J., Batiha, M. A. and Scheffknecht, G., "Oxyfuel Technology: Oil Shale Desulfurization Behavior During Staged Combustion," Fuel, 190, 229-236(2017). https://doi.org/10.1016/j.fuel.2016.11.022
  28. Li, W., Li, S., Xu, M. and Wang, X., "Study on the Limestone Sulfation Behavior Under Oxy-fuel Circulating Fluidized Bed Combustion Condition," J. Energy. Inst., 3, 1-11(2017).