DOI QR코드

DOI QR Code

Influence of Initial Molar Ratios on the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives

  • Received : 2019.11.26
  • Accepted : 2020.01.21
  • Published : 2020.03.25

Abstract

In this paper, the influence of initial formaldehyde/urea (F/U) molar ratios on the performance of low molar ratio (1.0) urea-formaldehyde (UF) resin adhesives has been investigated. Two initial F/U molar ratios, i.e., the first and second initial molar ratios were used for the alkaline addition reaction. Three levels of the first initial F/U molar ratios (2.0, 3.0, and 4.0) and two levels of the second initial molar ratios (2.0 and 1.7) were employed to prepare a total of six UF resins with an identical final molar ratio (1.0). The basis properties, functional groups, molecular weight, crystallinity, and thermal curing properties of the UF resins were characterized in detail. Higher levels (3.0 and 4.0) of the first initial F/U molar ratio provided the UF resins with better properties (non-volatile solids content, viscosity, gelation time, pH, and specific gravity) than those of the resins prepared with the conventional level F/U molar ratio of 2.0. Statistical analysis suggested that combining the first and second initial molar ratio of 4.0 with 1.7 would result in UF resins with greater adhesion strength and lower formaldehyde emission than those of the resins prepared with other molar ratios. The results showed that higher levels of the first initial molar ratio resulted in a more branched structure, as indicated by GPC, FTIR, DSC, XRD, and greater adhesion strength than those of the other UF resins with an identical final molar ratio of 1.0.

Keywords

References

  1. Akahira, T., Sunose, T. 1971. Joint Convention of Four Electrical Institutes. Science Education and Technology 16: 22-31.
  2. Bandara, N., Esparza, Y., Wu, J. 2017. Exfoliating nanomaterials in canola protein derived adhesive improves strength and water resistance. RSC Advances 7(11): 6743-6752. https://doi.org/10.1039/C6RA27470F
  3. Chiavarini, M., Bigatto, R., Conti, N. 1978. Synthesis of urea-formaldehyde resins: NMR studies on reaction mechanisms. Die Angewante Makromolecule Chemie 70: 49-58. https://doi.org/10.1002/apmc.1978.050700105
  4. Chuang, I., Gary, E. 1992. 13C CP/MAS NMR Study of the Structural Dependance of Urea-Formaldehyde Resins on Fromaldehyde-to-Urea Molar Ratios at Different Urea Concentrations and pH Values. Macromolecules 25(12): 3204-3226. https://doi.org/10.1021/ma00038a029
  5. Crowe, G.A., Lynch, C.C. 1948. Urea-Formaldehyde Kinetic Studies. Journal of The American Chemical Society 70(11): 3795-3797. https://doi.org/10.1021/ja01191a075
  6. de Jong, J.I., de Jonge, J. 1952. The reaction of urea with formaldehyde. Recueil des Travaux Chimiques des Pays-Bas 71: 643-660. https://doi.org/10.1002/recl.19520710704
  7. Dunky, M. 1998. Urea-formaldehyde (UF) adhesive resins for wood. International Journal of Adhesion and Adhesives 18(2): 95-107. https://doi.org/10.1016/S0143-7496(97)00054-7
  8. FAO. 2018. Forest Products Annual Market Review: 2017-2018. https://doi.org/10.18356/8265e672-en
  9. Ferra, J.M., Mena, P.C., Martins, J., Mendes, A.M., Costa, M.R.N., Magalhaes, F.D., Carvalho, L.H. 2010. Optimization of the synthesis of urea-formaldehyde resins using response surface methodology. Journal of Adhesion Science and Technology 24(8): 1455-1472.
  10. Goncalves, C., Paiva, N.T., Ferra, J.M., Martins, J., Magalhaes, F., Barros-Timmons, A., Carvalho, L. 2018. Utilization and characterization of amino resins for the production of wood-based panels with emphasis on particleboards (PB) and medium density fibreboards (MDF). A review. Holzforschung 72(8): 653-671. https://doi.org/10.1515/hf-2017-0182
  11. Goncalves, C., Pereira, J., Paiva, N., Ferra, J., Martins, J., Magalhaes, F., Barros-Timmons, A., Carvalho, L. 2019. Impact of the Synthesis Procedure on Urea-Formaldehyde Resins Prepared by Alkaline-Acid Process. Industrial & Engineering Chemistry Research 58(14): 5665-5676. https://doi.org/10.1021/acs.iecr.8b06043
  12. Jada, S.S. 1988. The structure of urea-formaldehyde resins. Journal of Applied Polymer Science 35(6): 1573-1592. https://doi.org/10.1002/app.1988.070350614
  13. Jeong, B., Park, B.D. 2019a. Performance of Urea-Formaldehyde Resins Synthesized at Two Different Low Molar Ratios with Different Numbers of Urea Addition. Journal of the Korean Wood Science and Technology 47(2): 221-228. https://doi.org/10.5658/WOOD.2019.47.2.221
  14. Jeong, B., Park, B.D. 2019b. Effect of molecular weight of urea-formaldehyde resins on their cure kinetics, interphase, penetration into wood, and adhesion in bonding wood. Wood Sci. Technol. 53(3): 665-685. https://doi.org/10.1007/s00226-019-01092-1
  15. Jeong, B., Park, B.D., Causin, V. 2019. Influence of Synthesis Method and Melamine Content of Urea-Melamine-Formaldehyde Resins to Their Features in Cohesion, Interphase, and Adhesion Performance. Journal of Industrial and Engineering Chemistry 79(1): 87-96. https://doi.org/10.1016/j.jiec.2019.05.017
  16. Jeong, B., Park, B.D. 2017. Effect of analytical parameters of gel permeation chromatography on molecular weight measurements of urea-formaldehyde resins. Journal of the Korean Wood Science and Technology 45(4): 471-481. https://doi.org/10.5658/WOOD.2017.45.4.471
  17. Jeong, B., Park, B.D. 2016. Measurement of molecular weights of melamine-urea-formaldehyde resins and their influences to properties of medium density fiberboards. Journal of the Korean Wood Science and Technology 44(6): 913-922. https://doi.org/10.5658/WOOD.2016.44.6.913
  18. Dazmiri, M.K, Kiamahalleh, M.V, Dorieh, A., Pizzi, A. 2019. Effect of the initial F/U molar ratio in urea-formaldehyde resins synthesis and its influence on the performance of medium density fiberboard bonded with them. International Journal of Adhesion and Adhesives 95: 102440. DOI: 10.1016/j.ijadhadh.2019.102440.
  19. Kibrik, E.J., Steinhof, O., Scherr, G., Thiel, W.R., Hasse, H. 2013. Proof of ether-bridged condensation products in UF resins by 2D NMR spectroscopy. Journal of Polymer Research 20(4): 79-89. https://doi.org/10.1007/s10965-013-0079-7
  20. Kibrik, J., Steinhof, O., Scherr, G., Thiel, W.R., Hasse, H. 2014. On-Line NMR Spectroscopic Reaction Kinetic Study of Urea-Formaldehyde Resin Synthesis. Industrial & Engineering Chemistry Research 53(2): 12602-12613. https://doi.org/10.1021/ie5001746
  21. Kim, M.G. 2001. Examination of Selected Synthesis Parameters for Typical Wood Adhesive-Type Urea - Formaldehyde Resins by 13 C NMR Spectroscopy. III. Journal of Applied Polymer Science 80(14): 2800-2814. https://doi.org/10.1002/app.1397
  22. Kim, M.G. 2000. Examination of Selected Synthesis Parameters for Typical Wood Adhesive-Type Urea - Formaldehyde Resins by 13 C NMR Spectroscopy. II. Journal of Applied Polymer Science 75(10): 1243-1254. https://doi.org/10.1002/(SICI)1097-4628(20000307)75:10<1243::AID-APP5>3.0.CO;2-F
  23. Kim, M.G. 1999. Examination of Selected Synthesis Parameters for Typical Wood Adhesive-Type Urea - Formaldehyde Resins by 13 C-NMR Spectroscopy. I. Journal of Polymer Science Part A: Polymer Chemistry 37(7): 995-1007. https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7<995::AID-POLA14>3.0.CO;2-6
  24. Kissinger, H.E. 1957. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry 29(11): 1702-1706. https://doi.org/10.1021/ac60131a045
  25. KS. 2016. KS F3101: Plywood. Korean Standard Association, Seoul, Republic of Korea.
  26. Lady, J.H., Kesse, I., Adams, R.E. 1960. A study of thermal degradation and oxidation of polymers by infrared spectroscopy. Part II. Polybenzyl. Journal of Applied Polymer Science 3(7): 71-76. https://doi.org/10.1002/app.1960.070030710
  27. Levendis, D., Pizzi, A., Ferg, E. 1992. The Correlation of Strength and Formaldehyde Emission with the Crystalline/Amorphous Structure of UF Resins. Holzforschung 46(3): 263-269. https://doi.org/10.1515/hfsg.1992.46.3.263
  28. Lubis, M.A.R., Park, B.D. 2018a. Modification of urea-formaldehyde resin adhesives with oxidized starch using blocked pMDI for plywood. Journal of Adhesion Science and Technology 32(24): 2667-2681. https://doi.org/10.1080/01694243.2018.1511075
  29. Lubis, M.A.R., Park, B.D. 2018b. Analysis of the hydrolysates from cured and uncured urea-formaldehyde (UF) resins with two F/U mole ratios. Holzforschung 72(9): 759-768. https://doi.org/10.1515/hf-2018-0010
  30. Lubis, M.A.R., Jeong, B., Park, B.D., Lee, S.M., Kang, E.C. 2019. Effect of Synthesis Method and Melamine Content of Melamine-Urea-Formaldehyde Resins on Bond-Line Features in Plywood. Journal of the Korean Wood Science and Technology 47(5): 579-586. https://doi.org/10.5658/wood.2019.47.5.579
  31. Mantanis, G.I., Athanassiadou, E.T., Barbu, M.C., Wijnendaele, K. 2018. Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Material Science and Engineering 13(2): 104-116. https://doi.org/10.1080/17480272.2017.1396622
  32. Mao, A., Hassan, E.B., Kim, M.G. 2013. Investigation of low mole ratio UF and UMF resins aimed at lowering the formaldehyde emission potential of wood composite boards. BioResources 8(2): 2453-2469.
  33. Marvel, C.S., Boettner, F.E., Elliott, J.R., Yuska, H. 1946. The Structure of Urea-Formaldehyde Resins. Journal of the American Chemical Society 68(9): 1681-1686. https://doi.org/10.1021/ja01213a001
  34. Minopoulou, E., Dessipri, E., Chryssikos, G.D., Gionis, V., Paipetis, A., Panayiotou, C. 2003. Use of NIR for structural characterization of urea-formaldehyde resins. International Journal of Adhesion and Adhesives 23(6): 473-484. https://doi.org/10.1016/S0143-7496(03)00089-7
  35. Myers, G. 1984. How mole ratio of UF resin affects formaldehyde emission and other properties: a literature critique. Forest Products Journal 34(5), 34-41.
  36. Myers, G.E. 1986. Resin hydrolysis and mechanisms of formaldehyde release from bonded wood products. Madison, WI, Forest Products Research Society, pp. 119-156.
  37. Nuryawan, A., Park, B.D., Singh, A.P. 2014. Penetration of urea-formaldehyde resins with different formaldehyde/urea mole ratios into softwood tissues. Wood Science and Technology 48(5): 889-902. https://doi.org/10.1007/s00226-014-0649-9
  38. Park, B.D., Chang Kang, E., Yong Park, J. 2006. Effects of formaldehyde to urea mole ratio on thermal curing behavior of urea-formaldehyde resin and properties of particleboard. Journal of Applied Polymer Science 101(3): 1787-1792. https://doi.org/10.1002/app.23538
  39. Park, B.D., Jeong, H.W., Lee, S.M. 2011. Morphology and Chemical Elements Detection of Cured Urea-Formaldehyde Resins Byung-Dae. Journal of Applied Polymer Science 120(3): 1475-1482. https://doi.org/10.1002/app.33247
  40. Park, B.D., Kim, Y.S., Singh, A.P., Lim, K.P. 2003. Reactivity, Chemical Structure, and Molecular Mobility of Urea-Formaldehyde Adhesives Synthesized Under Different Conditions Using FTIR and Solid-State 13C CP/MAS NMR Spectroscopy. Journal of Applied Polymer Science 88(11): 2677-2687. https://doi.org/10.1002/app.12115
  41. Park, B.D, Frihart, C.R., Yu, Y., Singh, A.P. 2013. Hardness evaluation of cured urea-formaldehyde resins with different formaldehyde/urea mole ratios using nanoindentation method. European Polymer Journal 49(10): 3089-3094. https://doi.org/10.1016/j.eurpolymj.2013.06.013
  42. Park, B.D, Kim, J. 2008. Dynamic mechanical analysis of urea-formaldehyde resin adhesives with different formaldehyde-to-urea molar ratios. Journal of Applied Polymer Science. 108(3): 2045-2051. https://doi.org/10.1002/app.27595
  43. Park, B.D., Causin, V. 2013. Crystallinity and domain size of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. European Polymer Journal 49(2): 532-537. https://doi.org/10.1016/j.eurpolymj.2012.10.029
  44. Pizzi, A. 1983. Aminoplastic wood adhesives. Wood Adhesives Chemistry and Technology, 1, pp.12-13.
  45. Pizzi, A., Valenzuela, J. 1994. Theory and practice of the preparation of low formaldehyde emission uf adhesives. Holzforschung 48(3): 254-261. https://doi.org/10.1515/hfsg.1994.48.3.254
  46. Pratt, T.J., Johns, W.E., Rammon, R.M., Plagemann, W.L. 1985. A Novel Concept on the Structure of Cured Urea-Formaldehyde Resin. Journal of Adhesion 17(4): 275-295. https://doi.org/10.1080/00218468508081165
  47. Que, Z., Furuno, T., Katoh, S., Nishino, Y. 2007. Effects of urea-formaldehyde resin mole ratio on the properties of particleboard. Building and Environment 42(3): 1257-1263. https://doi.org/10.1016/j.buildenv.2005.11.028
  48. Salthammer, T. 2019. Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. Building and Environment 150: 219-232. https://doi.org/10.1016/j.buildenv.2018.12.042
  49. Shi, J., Li, J., Zhou, W., Zhang, D. 2007. Improvement of wood properties by urea-formaldehyde resin and nano-SiO2. Frontiers of Forestry in China 2(1): 104-109. https://doi.org/10.1007/s11461-007-0017-0
  50. Siimer, K., Kaljuvee, T., Christjanson, P. 2003. Thermal behaviour of urea-formaldehyde resins during curing. Journal of Thermal Analysis and Calorimetry 72(2): 607-617. https://doi.org/10.1023/A:1024590019244
  51. Smythe, L.E. 1952. Urea-Formaldehyde Kinetic Studies. II. Factors Influencing Initial Reaction. Journal of the American Chemical Society 74(11): 2713-2715. https://doi.org/10.1021/ja01131a006
  52. Smythe, L.E. 1951. Urea-Formaldehyde Kinetic Studies. I. Variation in Urea Solutions. Journal of the American Chemical Society 73(6): 2735-2738. https://doi.org/10.1021/ja01150a089
  53. Soulard, C., Kamoun, C., Pizzi, A. 1999. Uron and uron-urea-formaldehyde resins. Journal of Applied Polymer Science 72(2): 277-289. https://doi.org/10.1002/(SICI)1097-4628(19990411)72:2<277::AID-APP13>3.0.CO;2-A
  54. Steinhof, O., Kibrik, E.J., Scherr, G., Hasse, H. 2014. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis. Magnetic Resonance in Chemistry 52(4): 138-62. https://doi.org/10.1002/mrc.4044
  55. TAPPI. 2001. Analysis of formaldehyde in aqueous solutions and of free formaldehyde in resins. TAPPI T 600 cm-01. United States
  56. Vyazovkin, S. 2017. Isoconversional Kinetics of Polymers: The Decade Past. Macromolecular Rapid Communication 38(3): 1-21. https://doi.org/10.1002/marc.201600615
  57. Wang, H., Cao, M., Li, T., Yang, L., Duan, Z., Zhou, X., Du, G. 2018. Characterization of the low molar ratio urea-formaldehyde resin with 13C NMR and ESI-MS: Negative effects of the post-added urea on the urea-formaldehyde polymers. Polymers (Basel) 10(6): 602-618. https://doi.org/10.3390/polym10060602