DOI QR코드

DOI QR Code

Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle

  • Boulal, Ammar (Laboratory de Modelisation et simulation Multi-echaelle, Departement de physique, Faculte des Science Exactes Universite de sidi Bel Abbes) ;
  • Bensattalah, Tayeb (Universite Ibn Khaldoun) ;
  • Karas, Abdelkader (Universite Ibn Khaldoun) ;
  • Zidour, Mohamed (Universite Ibn Khaldoun) ;
  • Heireche, Houari (Laboratory de Modelisation et simulation Multi-echaelle, Departement de physique, Faculte des Science Exactes Universite de sidi Bel Abbes) ;
  • Adda Bedia, E.A. (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
  • Received : 2018.09.25
  • Accepted : 2019.10.05
  • Published : 2020.01.25

Abstract

This paper investigates the buckling behavior of carbon nanotube-reinforced composite plates supported by Kerr foundation model. In this foundation elastic of Kerr consisting of two spring layers interconnected by a shearing layer. The plates are reinforced by single-walled carbon nanotubes with four types of distributions of uniaxially aligned reinforcement material. The analytical equations are derived and the exact solutions for buckling analyses of such type's plates are obtained. The mathematical models provided, and the present solutions are numerically validated by comparison with some available results in the literature. Effect of various reinforced plates parameters such as aspect ratios, volume fraction, types of reinforcement, parameters constant factors of Kerr foundation and plate thickness on the buckling analyses of carbon nanotube-reinforced composite plates are studied and discussed.

Keywords

References

  1. Abdelaziz, H.H., Ait Amar Meziane, M., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  2. Abualnour, M., Houari, M.S.A., Tounsi, A., AddaBedia, E.A., Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  3. Addou, F.Y., Meradjah, M., M.A.A, Bousahla, Benachour, A., Bourada, F., Tounsi, A., Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  4. AitAtmane, H, Tounsi, A., Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", J. Mech. Mater. Design, 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  5. Ajayan, P.M., Stephen, O., Colliex, C., Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Science, 256, 1212-1214. https://doi.org/10.1126/science.265.5176.1212.
  6. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct.,125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.
  7. Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
  8. Alimirzaei, S., Mohammadimehr, M., Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  9. Attia, A., Tounsi, A., AddaBedia, E.A., Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187.
  10. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R., Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
  11. Bakhadda, B., BachirBouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.31.
  12. Barati, M. R., &Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707.
  13. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
  14. Beldjelili, Y., Tounsi, A., & Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst.., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  15. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017a), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695.
  16. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017b), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.
  17. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., AddaBedia, E.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/sem.2018.65.1.019.
  18. Berghouti, H., AddaBedia, E.A. Benkhedda, A., Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  19. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H., Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
  20. Bouiadjra, R. B., Bedia, E. A. and Tounsi, A. (2013), "Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory", Struct. Eng. Mech., 48(4), 547-567. https://doi.org/10.12989/sem.2013.48.4.547.
  21. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S., Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061.
  22. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  23. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  24. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct.,20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
  25. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A., Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  26. Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.
  27. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion," Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  28. Boussoula, A.,Boucham, B., Bourada, M.,Bourada, F.,Tounsi, A.,Bousahla, A.A., Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct.Syst.., (In press).
  29. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191.
  30. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  31. Chemi, A., Zidour, M., Heireche, H., Rakrak, K., & Bousahla, A. A. (2018). "Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium", Mech. Compos. Mater., 53(6), 827-836. https://doi.org/10.1007/s11029-018-9708-x.
  32. Cherif, R.H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1.
  33. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  34. Coleman, J. N., Khan, U., Blau, W. J., and Gunko, Y. K., (2006), "Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-polymer Composites", Carbon, 44, 1624- 1652. https://doi.org/10.1016/j.carbon.2006.02.038.
  35. Dehghan, M., &Abbaszadeh, M. (2016), "Proper orthogonal decomposition variationalmultiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation", Comput. Method. Appl. Mech. Eng., 311, 856-888. https://doi.org/10.1016/j.cma.2016.09.008.
  36. Dehghan, M. and Abbaszadeh, M. (2019), "The solution of nonlinear Green-Naghdi equation arising in water sciences via a meshless method which combines moving kriging interpolation shape functions with the weighted essentially non-oscillatory method", Communications in Nonlinear Sci. Numerical Simulation, 68, 220-239. https://doi.org/10.1016/j.cnsns.2018.07.029.
  37. Dehghan, M., Abbaszadeh, M. and Mohebbi, A. (2016), "Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation", Appl. Math. Modelling, 40(5-6), 3635-3654. https://doi.org/10.1016/j.apm.2015.10.036.
  38. Dehghan, M. and Baradaran, G.H. (2011), "Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method", Appl. Math. Comput., 218, 2772-2784. https://doi.org/10.1016/j.amc.2011.08.020.
  39. Dehghan, M. and Mohammadi, V. (2015a), "The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: The Crank-Nicolson scheme and the method of lines (MOL)", Comput. Math. Appl., 70(10), 2292-2315. https://doi.org/10.1016/j.camwa.2015.08.032.
  40. Dehghan, M. and Mohammadi, V. (2015b), "The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: the Crank-Nicolson scheme and the method of lines (MOL)", Comput. Math. Appl., 70(10), 2292-2315. https://doi.org/10.1016/j.camwa.2015.08.032.
  41. Dehghan, M. and Shokri, A. (2008), "A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions", Math. Comput. Simulation, 79(3), 700-715. https://doi.org/10.1016/j.matcom.2008.04.018.
  42. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H., and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  43. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
  44. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  45. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  46. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  47. Fadelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K., Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006.
  48. Fourn, H., AitAtmane, H., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
  49. Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67(2), 115-123. https://doi.org/10.12989/sem.2018.67.2.115.
  50. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  51. Han, Y., Elliott, J., (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39, 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  52. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandwich Struct. Mater., https://doi.org/10.1177/1099636219845841.
  53. Hoang V. T., (2016), "Thermal buckling and postbuckling behavior of functionally graded carbon-nanotube-reinforced composite plates resting on elastic foundations with tangential-edge restraints", J. Thermal Stress., https://doi.org/10.1080/01495739.2016.1254577.
  54. Hu, N., Fukunaga, H., Lu, C., Kameyama, M. and Yan. B. (2005), "Prediction of elastic properties of carbon nanotube reinforced composites", Proc. Royal Soc. A, 461, 1685-1710. https://doi.org/10.1098/rspa.2004.1422.
  55. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-432. https://doi.org/10.12989/anr.2019.7.6.431.
  56. Ilati, M. and Dehghan, M. (2015), "The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations", Eng. Analysis Boundary Elements, 52, 99-109. https://doi.org/10.1016/j.enganabound.2014.11.023.
  57. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
  58. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
  59. Karami, B., Janghorban, M., Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  60. Karami, B., Shahsavari, D., Janghorban, M., Tounsi, A. (2019c), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  61. Karami, B., Janghorban, M. and Tounsi, A. (2019d), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  62. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
  63. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018b), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
  64. Karami, B., Janghorban, M. and Tounsi, A. (2018c), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  65. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  66. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.
  67. Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667.
  68. Kerr, A.D. (1965), "A study of a new foundation model", Acta Mechanica, 1(2), 135-147. https://doi.org/10.1007/BF01174308.
  69. Khayat, M., Dehghan, S. M., Najafgholipour, M. A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., 28(6), 735-748. https://doi.org/10.12989/scs.2018.28.6.735.
  70. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A., Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., https://doi.org/10.1007/s00366-019-00732-1.
  71. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.
  72. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  73. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Buckling analysis of functionally graded carbon nanotube reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006.
  74. Mahi, A., AddaBedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Modelling., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
  75. Mahmoudi et al. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandwich Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.
  76. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  77. Mehar, K, Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", European J. Mech. A Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
  78. Mehar, K. and Panda, S.K. (2017), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loading", J. Comput. Methods, 14(2), 1750019. https://doi.org/10.1142/S0219876217500190.
  79. Meksi, R, Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177%2F1099636217698443. https://doi.org/10.1177/1099636217698443
  80. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  81. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandwich Struct. Mater., 16(3), 293- 318. https://doi.org/10.1177/1099636214526852.
  82. Mokashi, V.V., Qian, D. and Liu, Y.J. (2007), "A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics", Compos. Sci. Technol. 67, 530-540. https://doi.org/10.1016/j.compscitech.2006.08.014.
  83. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
  84. Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441.
  85. Nguyen DinhDuc, Jaehong Lee, T. Nguyen-Thoi, Pham ToanThang (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032.
  86. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modelling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63, 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0
  87. Pradhan, S.C. and Phadikar, J.K. (2009), "Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory", Struct. Eng. Mech., 33(2), 193- 213. https://doi.org/10.12989/sem.2009.33.2.193.
  88. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A. A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031.
  89. Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065
  90. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31, 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.
  91. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  92. Shen H-S, Zhu, Z.H. (2012), "Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations", European J. Mech. A/Solids, 35, 10-21. https://doi.org/10.1016/j.euromechsol.2012.01.005.
  93. Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., 23, 623-631. https://doi.org/10.12989/scs.2017.23.6.623.
  94. Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C. (2010), "Carbon Nanotube-polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties", Prog. Polym. Sci., 35, 357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003.
  95. Thai, H.T., Choi, D.H., (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compo. Sci. Tech. 71, 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016.
  96. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A. A., and Mahmoud, S.R., (2019) "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  97. Vancauwelaert, F., Stet, M. and Jasieskia, A. (2002), "The general solution for a slab subjected to center and edge loads and resting on a Kerr foundation", J. Pavement Eng., 3(1), 1-18. https://doi.org/10.1080/10298430290029894.
  98. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams with elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
  99. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Modelling, 39(18), 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.
  100. Winkler, E. (1867), Die Lehre von der Elasticitaet und Festigkeit: mitbesondererRucksicht auf ihreAnwendung in der TechnikfurpolytechnischeSchulen, Bauakademien, Ingenieue, Maschinenbauer, Architecten, etc., Volume 1, Dominicus, Germany.
  101. Xie, X.L., Mai, Y.W. and Zhou, X.P. (2005), "Dispersion and alignment of carbon nanotubes in polymer matrix: A review", Mater. Sci. Eng., 49, 89-112. https://doi.org/10.1016/j.mser.2005.04.002.
  102. Yas, M.H. and Samadi N. (2012), "Free vibration and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press.Ves.Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  103. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst.., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
  104. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst.., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.
  105. Younsi, A., Tounsi, A, Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  106. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  107. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  108. Zenkour, A.M., (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  109. Zenkour, A.M., (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51, 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026.
  110. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015), "Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method", Appl. Math. Comput., 256, 488-504. https://doi.org/10.1016/j.amc.2015.01.066.
  111. Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Methods Eng., 59, 1313- 1334. https://doi.org/10.1002/nme.915.
  112. Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbon- nanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447, 51-57. https://doi.org/10.1016/j.msea.2006.10.054.
  113. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct. 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.
  114. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.

Cited by

  1. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  2. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2020, https://doi.org/10.12989/scs.2020.37.6.695
  3. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.001
  4. The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.015
  5. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
  6. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
  7. Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215
  8. Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.697